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ABSTRACT

This report treats two central topics related to the dynamical aspects of

the control problem of the six degrees of freedom JPL Robot Research Project

{RRP) manipulator" (a) variations in total inertia and gravity loads at the joint

outputs, and (b) relative importance of gravity and acceleration-generated reac-

_ tiontorques or forces versus inertia torques or forces. The relation between

_ the dynamical state equations in explicit terms and servoing the manipulator is

briefly discussed in the framework of state ,ariable feedback control which also

forms the basis of adaptive manipulator control.
f

Exact state equations have been determined for total inertia and gravity

,. loads at the joint outputs as a function of joint variables, using the constant

i inertial and geometric parameters of the individual links defined in the respec-, ' tive link coordinate frames. The range of maximum variations in total inertia

and gravity loads at the joint outputs has been calculated for both no load and

load in the hand. i

The main result of this report is the constructlon of a set of greatly sim-

plified state equations which describe total inertia and gravity load variations i

at the output of the six joints with an average error of less than 5%. The sim-

plified state equations also show that most of the time the gravity terms are

more important than the inertia terms in the torque or force equations for joint

numbers 2, 3, 4, and 5. Further, the acceleration-generated reaction torques

or forces, except from extreme arm motion patterns, are shown to have very

low quantitative significance as compared to the straight inertial torques or

forces in the dynamic equations restricted to simultaneous motions at the first

three joints.

The results are summarized in four tables and nine figures. The report

also contains all analytic tools and byproducts needed to arrive at the outlined

conclusions. An important analytical byproduct is the simplification of the

general matrix algorithm tor manipulator dynamics.
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I. INTRODUCTION

b

The purpose of control is to keep fixed or alterthe dynamical behavior of

a physical system in accordance with man I s wishes formulated in terms of per-

formance requirements and goals. The nature of the control problem com-

prises two distinct parts: (a) quantitative description of the dynamical

: behavior of the physical system {in our case, the manipulator) _o be controlled

and (b) specification of a "scheme" or contro] law for car,-ying out the desired

_) controlled behavior (in our case, to accomp!ieh a vaiiety of manipulative tasks

_f with specified performancel. This report is mainly about the former part of the
_ manipulator control problem:

Modeling and evaluating the dynamical properties and

behavior of the JPL Robot Research Project (RRP)

, manipulator.

The fundamental idea of control is that the inputs should be computed ,

from _he state. Of course, this idea is known as feedback. Thus, the natural
J

1 framework for formulating and solving control problems is the state description
of the physical system. The state incorporates all information necessary to

'I'_ " : i determine the control action to be taken since, by definition of a dynamical
%: system, the future evolution of the system is completely determined by its

I present state and the future inputs. The relation between explicit state equa-

7_" tions for manipulator dynamics and servoing the manipulator is briefly treated

_ in Section If.

The actual dynamical model for the six degrees of freedom $PL RRP

manipulator can be obtained from known physical laws (from the laws of the

Newtonian mechanics) and from physical measurements. This task amounts

to the de ,elopment of the equations of motion for the six manipulator joints

in terms of specified (measured) geometric and inertial parameters of the

links. :onventional procedures could then be applied to develop the actual

motion equations. Instead of using conventional procedures. *.he equations of

motion in this report are developed through the application _,f a general

algorithmic description of manipulator dynamics. The algorithm is based

on a specific representation of link coordinate frames in jointed mechanisms

Jl_l, Technical Memorandum 33-669 1
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and the formalism of the Lagrangian _echanics. The features of the general

algorithm together with the definitions of the involved functional symbols and _,

mathematical operations are described in Section III. Section III also provides

a general specification of the six equations of motion for the JPL RRP manipu-

lator as well as a condensed physical explanation of the different terms t

appearing in the equations. Section III concludes with a compact vector/matrix

description of the six motion equations.

The complete dynamical model of the JPL RRP manipulator is described
f

' by a set of six coupled nonlinear differential equations. Each equation contains

a large number of torque or force terms classified into four groups: (a) inertial

torque or force, (b) reaction torques or forces generated by acceleration at

other joints, (c) velocity-generated (centripetal and Coriolis) reaction torques

or forces, and (d) gravity torque or force. With few exceptions, each torque

i or force term depends on the instantaneous configuration (position) of several

links. To gain analytic insightintothe dynamical behavior of the manipulator|.
• in terms of explicitstate equations while keeping the analysis manageable,

!

i well-defined and useful dynamical model restrictions are identified in Sec-

i .... tion IV. It is emphasized, however, that the model restriction,_ are introduced
only for analytic purposes.

In Section V explicitstate equations are presented for inert_.al,gravity,

"'/"""i and acceleration-generated reaction torque/force terms for manipulator
' " I

motions rest-ictedto the firstthree joints. The lastthree (wrist)jointsare

thought to be temporally at rest in a known configuration, While in Section V1

complete {unrestricted)explicitstate equations are presented for inertialand

gravity torques or forces acting at all six jointaxes, The exact state equations

developed in Sections V and VI form one part of the important results of this

report.

Partial derivatives of the different link coordinate transformation _

matrices as well as the pseudo inertia matrices (together with numerical {:,_

values of inertial components) utilized in the development of the explicit state :!i-:
equations are compiled in Appendices A and B. Modifications of the explicit • _,=

and exact state equations for inertial and gravity terms when a load is __<_i

emplaced in the hand are treated in Appendix C.

2 JPL, Tochnical Memorandum 33-669
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The concluding part of the report is Section VII organized in five

subsections. From the exact state equations and numerical vr._.._-, _ "nertial

components of the JPL RRP manipulator the following conclu.',:ng coml-::ations

are made:

• Maximum and minimum values of total inertia seen at _II six

joint axes are determined in subsection VII. A; the constant and

: varying components of total inertias are separated out in the

c omput ations.
t

,
• Maximum gravity load variations seen at the different joint axesq

are determined in subsection VII. B.

The maximum total inertia and gravity load variations h_,ve been calcu-
: 3

lated for both no load and load in the hand. (The load is a I. 8 kg, 442 cm

i cube placed with its center at the of the
mass origin hand coordlnate frame.)

Utilizing the exact state equations restricted to simultaneous motions at the

first three manipulator joints, _

• The relative importance of acceleration-generated reaction

torques/forces versus inertial torques forces is quantitatively

_" . evaluated in subsection VII. C.

_ _ The main result of this report is

• The development of simplified state equations for total inertial

_" and gravity loads at all six joint axes, presented and evaluated

regarding accuracy in subsection %"]/. D.

Parameters dependent on a load in the hand are separated out in the

simplified state equations. Utilizing the simplified state equations,

• The relative importance of gravity load versus inertial load in

the torque/force equations is quantitatively evaluated in

subsection VII.E, normalized to unit acceleration.

It is shown that the gravity terms in most of the ti_e of normal (not too

fast) arm operation are more important than the inertial terms for joints

Nos. Z, 3, 4, an,' _ in the gravity field of Earth.

!
_i JPL Technical Memorandum 33-669 3
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The development and evaluation of explicit state equations for total

inertial and gravity loads acting at the six arm joint axes form the basic

dynamical model for the JPL RRP manipulator under operating conditions

when acceleration- and velocity-generated reaction torques or forces can bc

neglected. The relative significance of the different reaction terms in the

complete torque/force equations for fast ar,n movemerts will be evaluated in

a separate report after the determination of explicit state equations for all

existing reaction torques and forces.

' Genera] simplification of the algorithmic definitions for all dynamic

coefficients of any manipulator is introduced and mathematically justified in1

Appendix D at the end of the report.

J

i
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II. DYNAMICAL MODEL AND CONTROL SYSTEM DESIGN

The RRP manipulator under consideration is a coupled electromechanical

system. The inputs to the system (with which contrclis accomplished) are

torque generated by motors driving the joints. The outputs are joint position

and motor shaft velocity m_dourements. This input/output description forms

the definition of the manipulator as a dynamical system. To make this dynami-

cal system definition (or dynamical model) quantitative, mathematical relations

i are required which relate input to output. The mathematical relation between

input (torque) and output (position and velocity) is obtained by the specification
t

of state equations (differential equations) governing the manipulator motion.

The execution of purposeful manipula"-,e tasks requires two types ofi
performance from the viewpoint of servo control: (1) positioning the man;vulator,

i and (2) exerting torques or forces on objects through the manipulator. Manipu-

i lator positioning is a task of controlling the relative displacement of several

i " links connected by single degree of freedom joints. The positioning control
problem can be subdivided into two classes: (a) point-to-point control, and

• (b) continuous path control. In point-to-point control mode only the final

° :" (terminal) joint variable values are specified as "desired output". While

_ in continuous path control mode the "desired output" is a closed time history

.,: , (time sequence) of joint variable values. The strict space-time coordination

,_i of several joint variable values defines a continuous path for manipulator
_, _%_, motion in the work space.

The objective of closed loop (feedback) control is to reduce the effect

of external disturbances and system parameter changes on the desired system

output. In the case of position-servoin& a manipulator, the notion "external

disturbances" can be used in a broad sense: they can include known effects

deliLerately neglected in the mathematical form of the dynamical model. (For

instance, neglected small reaction torques or forces, neglected small link

mass center offsetsp etc.) There is, however, a limit on the range of changes

in system parameters and disturbances which can be tolerated without deterior-

ation of desired servo performance. In general, the acceptable varlation

in system parameters can be extended by readjusttn£ (varyiu 8) feedback gains,

JPI, Technical Memorandum 33-66? 5
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In particular, for a critically damped position servo using velocity feedback,

an essential system parameter is the total effective inertia Jt: if Jt is decreased

by a factor "n" relative to a nominal value the damping and natural frequency

are both increased by a factor ,fn; but reduction of the velocity feedback con-

stant to fn to its original (nominal) value will restore critical damping. (See,

for instance, Refs. 1, 2, 3. ) Man__pulator motion ;:_ general and load handling

in particular imply cunsiderable variations in total effective inertia Jt as seen

at the different joint drives. Therefore, to maintain a required servo perfor-

mance despite variations in .lt, Jt must be known explicitly as a function of joint

variables (or implicitly as a function of time for a given motion program).

A strict continuous path control requires a uniform servo performance.

Thus, it is important to obtain an appropriate state descr.ption for total
r

effective inertia variations as seen at the different joint drives. One outco._e

of the manipulator dynamic model analysis contained in this report is the

; specification of state functi-ns for variations in total effective inertias, with '

_ or without load in the hand. !

i "" _- The gravity load acting at the different joint drives during arm motion

. '_ \_i ':; is an important dynamic factor in commanding torques to obtain a desired

_'_ !._? manipulator position output in a continuous path control mode. Another out-
come of the manipulator dynamic model analysis of th_s report is the specifica-

tion of state functions for variations in gravity loads as s_en at the different

joint drives during arm motion, with or _ithout load in the hand.
J

The speed of arm motion can be interpreted both kinematic ally and dynam-

ically. The kinematic interpretation considers only the time required to

move for instance the fingertip from one point to another in the workspace,
t

while the
dynamic interpretation of arm speed considers the torques or forces 1

acting at both the different joints and the finserti p during arm motion. A !;:
T

useful dynamic definition for "fast" or "slow" arm motion can be formulated _,°

in terms of reaction torques or forces induced by the arm motion: the arm f;i<_

motion is "slow" if the effect of induced reaction torques or forces can be _

neglected in commanding torques to obtain desired position outputs; if not, __

then the motion is "fast" in a dynamic sense. It is noted that an arm motion

b JPL Technlcal Memorandum 33-669

I
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can be "slow" in a dynamic sense but still be "fast" in a kinematic sense, i:
Another outcome of manipulator dynamic model analysis is to contribute to

the establishment of the boundary between dynamically "slow" and "fast' arm

motion with respect to control systen_ performance.

Figure 1 shows schematically the RRP manipulator position servo control

under development, indicating also the relation of manipulator dynamical

model and servo design.

2

J
i

s
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III. GENERAL MODEL FOR MANIPULATOR DYNAMICS

The general equatiors of motion for jointed mechanisms (manipulators) can

conveniently be expressed through thc application of the Lagrangian equations

for nonconservative systems (Ref. 4). Many investigators in the field of

computer-controlled manipulation in the U.S.A. employ the Lagrangian tech-

nique to formulate the dynamic and control problem of manipulators, and apply

the Hartenberg-Denavit representation of coordinate frames in jointed rnecha-

S nisms to the definition of manipulator inertial parameter s and dynamic variables

(Refs. 5, 6, 7 and 8). The application of the Lagrangian formalism together

with the Hartenberg- Denavit link coordinate representation re suits in a conven-

ient and compact algorithmic description of the manipulator equations of motion.

: The algorithm is expressed by matrix operations (Ref. 5), and facilitates both

: : analysis and computer implementation. The evaluation of the dynamic and con-

, trol equations iu functionally explicit terms in this and subsequent memos will

i be based on the compact matrix algorithm developed in Ref. 5.

i' A. The General Dynamic Algorithmi
,

i + +.+ For clarity and easy reference, the general dynamic algorithm as applied to

,+ _V- • manipulators is repeated here together with the corresponding definitions. The
_+o associated manipulator coordinate system conventions and transformations

:__ "" together with their application to the JPL RRP manipulator* should be consulted

whenever necessary.

-:_ The general algorithm which describes the manipulator equations of motion is

given by the following expression for the torque or force F i acting at joint "i":

j=l k=i k=l p=l

" mjGUjiPjl = Fi ' i= I, 2, ..., n (I)
l

ill i

where superscript T denotes the transpose of the matrix Uji, and

*Lewis, R.A., Bejcay, A.K., "RRP Manipulator Conventions, Coordinate
Systems, and Trajectory Considerations, " _PL Guidance and Control
Technical Memo 343-174, I December 197_-.

JPI., Technical Memoraadum 33-669 9
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F i = torque or force acting at joint "i" (that is, corresponding to the i

joint variable qi ), _
i

qi = "joint variable i", i = 1, ..., j, ..., k, ..., p, ..., n where "n" 1

denotes the degree-of-freedom (that is, the total number of joint i
1:

variables} of the manipulator,

1
qi' qi = velocity and acceleration, respectively, ,_f joint variable "i". _t

The "building blocks" m i, p'j, G, Uji, Ujk p, and Jj of Eq. (1) are defined as
follows:

(

mj = the mass of body "j" in the chain of "n" bodies (links}.

' _. : mass center vector of body (link)"j" in the coordinate system

. fixed in the same body, given as a 4 x 1 vector with components

i ' I

..'{ - , (z) i

lJ t

e

G : acceleration of gravity, given as a I x 4 vector with components - :_

O = [G x, GF, G z, 01 (3)

Uji : the first partial derivative of the T_) transformation matrix with _."_:'"

respect to ql" It is a 4 x 4 matrix. The transformation matrix T j _
i

s defined as [:)_;_"

which rela_ e a point given in the "j" fr_ne to the base reference

frame "O"0

I0 SPL Technical Memorandum 33-669
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!

t

i

(,

Since an individualtransformation matrix T i _:depends only on

qi' it is convenient to express the derivative of with respect1-1 _'

to qi through matrix operators Q. Thus, we have the following i

expression for Uji: !

[

..... Ti_ )''" T j
: 8qi ToTI _qi( I j-I I

t

i = T 1 Z .. QT i -. T j i <, 0TI " i-I " j-I ' - j (4)

i where for a rotational joint variable qi = 8i we have

_" "0 -I 0 O"

' 1 0 0 0 "
I

I: Q : Qe.= 15)
1 0 0 0 0

0 0 0 0

and for a linear joint variable qi = ri we have

"0 0 0 O"

0 0 0 0 ;_

•
U_,,.j_r = the second partial derivative of the T_ tranaformation matrix with _!:_'__

respect to qk and qp. It is a 4 x 4 rr_trix. U sing the notations ,_._.r<_'_.

defined above, we have the following expression for Ujkp_

aZTJ a iT k 8a_a..,..lTP •
Ujkp qkS¢_ qp p-

:

JPL Technical Memorandum 33-669 11
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withk, p_< j. It is noted that for k = p the second partial [l
derivative matrix operator for a linear joint variable r k is zero,

Q = o (81 i
rkr k I

while for a revolute joint variable Ok we have i"

-1 0 0 0"

0 -1 0 0

" °ekek - o o o o (9)
J

I

o o o o
P

I = 4 x 4 "inertia matrix" (we will call it "pseudo inertia matrix") for
Jj

'_ _ body (link) "j" defined as follows:
J

• ,_ _"kill +_zz+ j33 jla _,3 x.j

._ jlZ g_ ill jzz + is3 _z3 7j J
(lo) ",J.=m.

grill _ "113

t .
Xj _

where

_, _], z] are defined by Eq. (2), .nd

kit p = radius of iiyration "ip" (i, p : 1, 2, 3) o_ body (link)
"j" about the origin of the coordinate frame fixed in

the same body (link). The radius of _/raUon is

12 JPL Technical hiomoA.andum 33-669 _,_:..
_-_
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J

defined by the corresponding member of the inertia

tensor I.. as
.3_P

j1p m.
J

where the i, p = l, 2, 3 indices, respectively, rep-

resent the x, y, z axes of the Cartesian coordinate

frame fixed in body "j".

As seen in Eq. (10), the J'j "pseudo inertia matrix" is symmetric.

, Itis constructed from the mass center vector Pj and the elements
of the inertiatensor I.of body (link)"j". Itis noted that the diag-

J
onal terms of the upper left 3 x 3 partition of the 3. "pseudo inertia

J

r ; matrix" are onl__._yrelated to the diagonal terms of the correspond-

; i ing true inertiamatrix lj, but the diagonal ::erms of the "pseudo"
_ and true inertia matrices are not identical.

, _ For an "n" degrees-of-freedom n_ '.nipulator, Eq. (I) gives a coupled set of "n" i

nonlinear second-order differentia, equations which constitute the complete

dynamic model for manipulator s. l

t

t

JPX, Teeb_e_ Memorandum 33-669 13
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B. Dynamic Equations for the IPL RRP Manipulator
Expanded in General Terms

If the algorithm given byEq. (1} is expanded in general terms for the 5PL RRP

sb: degrees-of-freedom man;pulator, the following equations of motions are

ob'cained: ?

DI101 + DIZ02 + D13{:3 + DI4B 4 + DI5_ 5 + D1606

+ DIll01 + DIZ202 + D133r + D1448 + D15505 + D16686

+ DIIZgI0 z + DII3{_I_3 -_DII4BI{}4 + DI15_I{}5 + DI16_}I06

+ DLZ302{"3 + DIz4Ozo 4 + .DIZS{}Z{}5 + DLZ6BZO 6

. : + D134"304 + D1351"365 + D1361"3e6

i % _ o °• ' + D145e405 + DI46B4B 6 + D15£0506 + D 1 = T 1 {IZ)

"I DIZ_I + DzZ_z + D231:3 + DZ464 L D25_ 5 + D26_ 6

.2 .2 2 •

+ D212_}I_2 + D213_I_3 + D214_I_4 .LD215_I_5 + D216_I_6 ,,__

+ DZ23BZ{'3 + DZ24BZ%4 + DZ25gZ_5 + DZ26BZB 6 -,

D234_364 D235_3%5 D256"3e 6
+ + +

_C

+ D245{)4e5 + D246@486 + D256BJ} 6 + D z = T z 1131 . _:_

_In the subsequent equations 0i and 6i denote, respectively, the anNar velocity :): "
ana acceleration of the revolute joint variables 0i belonging to joints I, 2, 4, _"" :

5, 6, while _3 and _3 denote, respectively, the acceleration and velocity _ the

linear displacement joint variable r 3 belonging to the linear joint {joint 03). ..
See also Fisure 2 later in the text.
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J

DI301 + D2302 + D33F3 + D3404 + D35"05 + D3606

• 2 .2 .2 2 2 2
+ D311Ol + 1332292 + D333r3 + D344_ 4 + D355_ 5 + D36666

+ D3120102 + D313011"3 + D3140104 + D3150105 + D3160106

_: + D323021" 3 + D3240204 + D3250205 + D3Z60206

+ D334r304 + D3351"305 + D336r306

t

-, + D345_4_5 + D3460406 + D3560566 + D3 = F 3 (14)

J DI4(Jl + D?.4(Jz + D34_ 3 + D4404 + D45iJ5 + D46iJ6

i .2 2 .2
,; • + D41101 + D422_2 + D433i.2+ D4e4_24+ D45505+ D4660_'

+ D4120102 + D413011"3 J, D4146164 + D415010S + D4160106

+ D42302_ 3 + D4240204 + D4250205 + D4260206

+ D4341"304 + D4351"305 + D4361"306 _ :[

+ D445_465 + D446_466 + D456_5_6 , D4 = T 4 (15) ..

JPI, Te©hnteal Memorandam 33-669 15
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D150! + D258 z + D35_:3 + D45"_4 + D5505 + D5606

•2 .Z _Z+ D544_)2 + .Z .Z+ D51181 + D5ZZ@ z + D533 D55585 + D56686

+ D51Z@I8 Z + D51381_ 3 + D5140104 + D515010 5 + D5168186

+ D6450405 + D6460406 + D65&eSe&___'" + D 6 = T 6 (17)

The coefficients D i, Dis and Dis p in Eq8. (12) to (17) are functions of both the i_
joint variables and inerti&l parameters o_ the manipulator, and can be called !

"the dynamic coefficients of the manipulator". The physical meanin s and func- _"

tionLl relation of the three classes of dynamic coefficients can easily be seen I_

from the definin 8 alsorithrnic expression given by Eq. (l)z

(I) The coefficients Di (sinsle subscript) &re the gr&vity terms, rune- !_

tionally defined by the last term in the left hand side of Eq. (I).

(Obviously, in zero sravity fiedd the Di coefficients &re sets. )

16 /PL Technical M_morsndum 33-669 I
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3

(2) The coefficientsDij (double subscript)are related to the accelerat],_n
• of the jointvariables; they are functionallydefine_ by the firstterm in ,

the lefthand side of Eq. (I). In particular, for i = j, D.. is related toII

the acceleration of joint"i" where the driving torque T i (or force Fi)
acts, while for i _ j D.. is related to the reaction torque (or force)

Ij
induced by the acceleration of joint "j" and acting at joint"i", or vice

versa. (Itis seen from Eqs. (IZ) to (17) that Dij = Dii.)
(3) The coefficientsD.. (triplesubscript)are related to the velocity of the

xjp
" jointvariables; they are functionallydefined by the second term in the

lefthand side of Eq. (I). The last two indices (jp)are related to the

velocitiesof jointvariables "j" and "p" whose dynamic interplay

. induces a reaction torque (or force) at joint'T'. Thus, the firstindex

| (i) is always related to the joint where the velocity-induced reaction

i torques (or forces) _re "felt". In particular, for j = p, Dij j is related4

i to the centripetal force generated by the angular velocity of joint "j"
; and "felt" at joint "i", while for j _ p Di_.pJ is related to the Coriolis _:

force generated by the velocities of joints "j" and "p" and "felt" at ]

j joint "i'. It is noted that for a given "i" we have Di; p = Dip; which is
_ b

-' apparent by physical reasoning, t
J J

: As seen, Eqs. (12) to (17) are six coupled, nonlinear, second-order differential

equations describing the dynamic behavior of the 3PL RRP manipulator. For a

given set of applied torques T i (i : I, 2, 4, 5, 6) and force F 3 as a function of 1

time, Eqs. (12) to (17) should be integrated simultaneously to obtain the act_al

motion of the manipulator in terms of the time history of the joint v_rlables e l,

e2' r$, e 4. e 5, 06. Then the time history of the joint variabl_s can be trans-
formed to obtain the time history (trajectory) of the hand motion by using the

appropriate tran_ormation matrix described in the footnote on page 9. Or,

ff the time history of tlm joint variables {together with the time history of their

TThe symmetry of the two dynamic coefficients, Dlj = Dji and D_r - Dipj caneasily be seen from the defining equation, Eq. (I), by hotinS

Trace (ABC T) = Trace (CBA T) and Ujk p = Ujp k

where B is a symmetric matrix, while A and C csn be two 8euersl (nou-
symmetric) square matrices.

JPI, Technics1 Memorandum 33-669 17
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acceleration and velocity) is known ahead of time (for instance, from a

trajectory planning program, see Refs. 1, 2 and3),then Eqs. (12) to(17) can

be utilized to compute the torques(T i, i - 1, 2, 4, 5, 6) and force F 3 as a

functio_ of time which are required to produce the particular planned (or known)

manipulator motion. The Stanford manipulator control scheme (Ref. 7) utilizes

the latter procedure.

In order to precompute torques and forces for a given manipulator motion, or

, to obtain the actual manipulator motion for given torques and forces (or, in

general, to perform manipulator dynamic behavior and control systen_ analysis
t

and design), Eqs. (12) to (17) as stated cannot be used without knowing the

: explicit functional form (or, alternatively, the time history) of the dynamic
i

coefficients Di, Dij, Dij p. Eqs. (12)to (17)in the stated form, however, bring

i ! out an important point: in the case _f simultaneous motion of several joints, the
' motion at one joint has a dynarrlic effect on the rr.otion at other joints, and the

; torque (or force) applied at one joint has a dynamic eHect on the motion at other
, joiutL Since the dynamic coefficients are dependent on the values of the joint

i variables, the e_fect of dynamic coupling between motions at different joints will, _.! depend on the actual manipulator link configuration during motion.

_° _:_ _i In order to facilitate further reference in the dynamic and control system analy-
_ : _ sis of the 3PL RRP manipulator, the lengthy and complex form of the dynamic

equations, Eqs. (12) to (17), is brought into a more compact and structured

representation.

(I) The gravity terms Di are expressed by a six-dimensional column

vector denoted by _G s

D "

D 2 i _

D3 i_

D6. I

18 JPI. Tocbnical Momorandum 33-669 I_
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(2) The acceleration-related coefficients are expressed by a 6 x 6

symmetric matrix denoted by DA:

"DI1 DIZ DI3 DI4 DIS DI6

DI2 D22 D23 D24 D25 D26

t

DI3 DZ3 D33 D34 D35 D36
L

•. DA__ (191

i DI4 DZ4 D34 D44 D45 D46

i DI 5 D25 D35 D45 D55 D56

%

DI6 D26 D36 D46 D56 D66

' _ ?'_ Let the acceleration of the six joint variables be expressed by a six-
-t

._ .... dimensional column vector denoted by q.

p ,

m

t

1)z

tz3
l (2o1

e.

@.

%

SPL Techntcm_L blLemor_Jurn 33-669 19
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Thus, 2.1136 acceleration-related terms inEqs. (12) to (17) can be t:

written in the compact matrix-vector product form:

(3) The velocity-related coefficients in each of the six equations, Eqs. (12) i

to (17), can be expressed separately by a 6 x 6 symmetric matrix

denoted by Di, V and defined in the following way:

"2Dil I Dil 2 Dil3 Dil4 Dil5 Dil6

Dil2 2Di2 z Di23 Diz4 DiZ5 Diz 6
t
2

i-. D. :
' _" Dil3 Di23 2Di33 Di34 135 Di36 f

i Di,V A_ (22)
-, . D.

_ ).: .j Dil4 ,Z4 Di34 ZDi44 Di45 Di46
!

-_ _Z_ Di 15 125 Di35 Di45 ZDi55 Di56

'_ I Dil6 DiZ6 Di36 Di46 Di56 ZDi66 "
k

Let the velocity of the six joint variables be expressed by a six-

dimensional column vector denoted by q:

• I"

_a Y!
r _

q Q . {ZZ.a} =
84 '_

•

'i/, , I

ZO JPL Tech._cal Nemorand_m 33-669
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Then the 21 velocity-related terms in each of the six equations, Eqs.

(12) to (17), can be e=:pressed separately in the following compact

matrix.- vector prodact form:

_- q _i,vq (Z3)

where the superscript T denotes the transpose of th_ column vector _,

and subscript "i" refers to the joint (i = 1, • • • , 6) at which the

velocity-induced torques (or forces) are "felt".

The expression given by Eq. (23) can be regarded as a component in a

, six-dimensional column vector denoted by dv:i

0

)
I • •

' _ @-_ _, = (241

JPL Techatcs_ Memol'andum 33-669 21

e I

1974008732-029



Let the torques T 1, T Z, T 4, T 5, T 6 and force F 3 applied at joints
i = 1, • ." , 6 be ex_-ressed by a six-dimensional column vector denoted

by dTF:

T
1

T Z

: F 3

- = (zs)_* dTF
_ T 4
i

!! T5

i _ T6z i

' _ _ i Then the six, coupled nonlinear differential equations, Eqs. (IZ) to

-_: (17), describing the dynamic behavior of the JPL RRP manipulator can

" : be expressed by the following compact and structured vector equation:

where all the necessary functional and operational deflnitions are pro-

vided previously in this Section.

It is noted that s_,n_e of the dynamic coefficients Di, Dij and Dij p in
Eqs. (12) to (17) are zero for different reasons, as the explicit coeHi-

cient evaluation will show it in the subsequent Sections. In general,

some of the dynamic coefficients in a full scheme of manipulator

equations of motion (like the scheme of Eqs. (12) to (17)) will be, or

can be zero for the/ollowlng physical reasons:

• The particular kinematic design of a manipulator can elimi-

nate some dynamic coupling (Dil. and Dtip- coefficients) between
joint motions.

22 SPL Te_haical Memorandum 33-669
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i
L,

• Some of the velocity-related dynamic coefficients have oniy i
I

dummy existence in the general schenae; that is, the.. are _

physically non-existent. (For instance, the centripetal fc.rce

will not interact with the motion of that joint which genera.,:es

it, that is, Dii i = 0 always; however, it can interact with

motions at the other joints in the chain, that is, we can have

_. D... ¢ 0.)':'

" • Due to particular variations in the link configuration during
,

_ motion, some dynamic coefficient_ may attain zero values at

• particular instants of time.
£

The equations of manipulator motion given by Eqs. (12) through (17) are i

symbolic differential equations; they include all inertial, centripetal, Corioli,_-,

and gravitational effects in symbolic form. (Symbolic in the sense that the

Di, Dij , Dij p coefficients are not specified explicitly. ) In the subsequent

sections the inertial (all Dii and some Dij) as well as the gravitational (D i)
coefficients will be explicitly specified and evaluated.

*The relation between the general dynamic algorithm, Eq. (I), and the gener- :;_:
ally zero dynamic coefficients in the scheme of dynamic equations, Eqs. (I;) =_::_•
to (17), are discussed in the following memo: !_;_

Lewis, R.A., "Some RRP Manipulator Dynamic Considerations Impacting
Planrdn_ Program Implementation, I, JPL Guidance and Control Technical
Memo 343-183, 13 March 1973.

Further, the simplifications of the general dynamic algorithm developed in
Appendix D of this report explicitly show both the generally zero dynamic
coefficients and the symmetries between some of the generally existing
dynamic coefficients.
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IV. RESTRICTED DYNAMIC MODELS {

i,
To perform dynamic behavior and control system analysis for the 5PL RRP

manipulator, functionallyexplicitexpressions must be derived for th_ ,_ n1_u- i

lator dvn_-mic coefficientsD i, Dij, and Dijp defined in the previous Section. !

As seen from the defining .quationsfor Di, Dij, and Dijp, the derivation of i

functionally explicit expressions for the dvnamic coefficients for a six-degree

of-freedom manipulator is a tremendous t_sk. Furthermore, the resulting I

expressions can be rather complicated so that the coefficientequations can

easily get out of hand. Thus, to keep the analytic task manageable, some

dynamically meaningful restrictionswillbe introduced into the general dynamic

model of the TPL RRP manipulator. The differenttypes and classes of
i

: restricteddynamic models are briefly described in the following subsection.
t
t
: A, Alternative Model Restrictionst
i

"_'_' Active dynamic coupling between motions at differentj_ints exists only when

several links are moving relativeto each other simultaneously. (Note that

o _ ._ there is always a passive dynamic coupling between the motion at joint'T' and

/!_ ,_ the non-moving joints, "felt"by the motor brake of the non-moving joints.)

_.i_" "'-- Thus, an obvious dynamic restriction for analytic purposes is to consider the

motion only at one joint"i" at a given time _ that the positions at the other five

_! joints are kept fixed in a known configuration (representing a fixed, known load

for joint motor "i")while there is a motion at joint "i".

Another meaningful dynamic model restriction for analytic purposes is to con-

sider the simultaneous motion at a restricted number (a subgroup) of joints,

while the positions at the other joints are kept fixed in a known configuration. "

In that case, the dynamic interaction only between moving links is of interest t_i"

for analysis. Two dynarnicail_,important subgroups of _ointscan irnmediately

be identified for the JPL RRP manipulator_ the first three _oints (i = I, 2, 3),

and the last three _oints (i = 4, 5, 6). "_

Another important dynamic model restriction is to consider only the acceleration- ,.

related and gravity terms in the equations of motion. This restriction can mean- _
inglully be combined with the subgroup restriction described above. It is noted, _

however, that, for general motions, the dynamic importance of the

24 JPL Technical Memorandum 33-669 |_
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velocity-dependent terms in the equations of motion can only be evaluated by

an explicit evaluation of the velocity-dependent dynamic coefficients Dij p.

B. Applications of Dynamic IVtodel Restrictions

Though the general motions for the IPL RRP manipulator are considered to

consist of a coordinated, simultaneous motion of several or all joints, the

dynamic model re strictions de scribed in the previous subsection have

important applications. First, they considerably contribute to an explicit

insight into the dynamic behavior of the manipulator under different motion

: conditions. Second, they contribute to the development and design of a reliable

and simple control system. Third, they can profitablybe used to simulate or

check out differentelements and aspects of the manipulator control system in

real time.

. The main advantage gained by the dynamic model restrictions in the analysis is

. that the introduced simplificationsare related to well-defined and controllable

J ' a s sumption s.!



V. RESTRICTED DYNAMIC MODEL FOR THE FIRST
THREE LINK-JOINT PAIRS

The firstthree links of the JPL RRP manipulator are called (see footnote,

page 9)

Link I: post

Link 2: shoulder

Link 3: boom
f

The associated joint variables are, respectively, 8 I, O2, r 3. The Cartesian

, ' reference frames fixed in the first three links are subscripted by 1, Z, 3.

' Figure Z shows the actual link, reference frame, and joint variable relations.

As described in general terms in footnote, page 9, the values of the two revolute
, !

jointvariables (_I and 02) and the linear (sliding)jointvariables (r3) are mea-i
sured in the following sense:

01 = the angular displacement of the X 1 axis relative to the X 0 axis, posi-

, tive in the right hand sense about the Z 0 axis; ,

:_ _' ! @Z = the angular displacement of the X z axis relativeto the X 1 axis, posi-

":'i.: " •: tire in the right hand sense about the Z I axis; _"

_._."=_ _.i r 3 = the linear displacement of the origin of the X3Y3Z 3 reference frame

_== _,_, relativeto the origin of the X2YzZ 2 reference frame, measured along

.,_'_'e__.- _ the Z 2 axis (always positive)

As seen in Fig. 2, the first three link-joint pairs constitute the main "arm-

positioning" mechanism, arid the associP.ted three driving motors carry the

heaviest loads. Thus, it is dynamicaUF meaningful and important to consider

the first three link-joint pairs by thewselves as a subgroup, temporarily sep-

arated from the motions at the last three (wrist) joints.

The definition of *'restricted dynamic model for the first three link-joint pairs"

treated in this Section is the following|

• The last three (wrist) joints are at rest in a known configuration. (For

ins_nce, an analytically convenient, "known" configuration for the

three wrist joints is the one seen in Fig. Z.)

• There can be simultaneous motion at the first three joints, while the

wrist joints are at rest.

Z6 JPL Technical Memorandum 33-669
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The restriction has the following dynamic meaning and significance:

s The last three (wrist) links, together with an object in the hand, form

a constant (not time-varyingl) load as seen by the first three joint

motor s.

• There will be active dynamic coupling between motions at the first

three joints only.

, The last point has the consequence that in the dynamic coefficient matrices DA

and Di, V (see Eqs. (19) and (21)) only the upper left 3 by 3 partitions are of

interest, and the state (or time) variation of three gravity terms (D 1, D 2, D 3,

-- see Eq. (18) --) should only be considered.

In _he "restricted dynamic model for the first three link-joint pairs" described

i above, the values of the mass center vector and "pseudo inertia matrix" for the

first two links ('PI' -P2' Jl' JZ ) given in Appendix B at the end of this memo are

; unchanged. The values of the mass center vector and "pseudo inertia matrix"

for the third link (P3 and J3) as given in Appendix B, however, should be modi-

fied according to the fixed configuration of the wrist structure. That is, the

' "'_ inertia properties of the wrist structure should be properly added to the values

_ of P3 and Jy For the configuration seen in Fig. Z the modification is simple,

_ : _. since the wrist structure only represents a symmetric, straight extension of the

", ",, _ boom. In the subsequent evaluation of restricted dynamic coefficicnts, the wrist

_'{_. ' structure configuration seen in Fig. 2 i8 assumed.

In this memo, only the gravity and acceleration-related terms are explicitly I

evaluated in the "restricted dynamic model for the first three link-joint pairs", i

The velocity-related terms will explicitly be evaluated in a subsequent memo, i

To distinguish between dynamic coefficients belonging to the dynamic model I •

restricted to motions at the flrct three joints, and those belonging to all joint _

motions, we introduce the following notationz _i

$ $ ,:

Di , Dij, DIjp = for motions restricted to the first three joints; :.'

Di, Dij, Dij p = for motions at all joints. _)

In the subsequent equations, the "e_ar" (*) distinction will also be used for the _

inertial par_ters (related to link 3) which specifically belong to the restricted

_L
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f

model. The following short notation will also be adopted in the equations for the

dynamic coefficients:

sin 8. =A sS.
I I

I
cose.A ce.

• 2 A sZe.
t sxn ei --- 1

Z ._cZe.t COS @. =
1 1

i The explicitmatrix functions for the Uji partialderivative matrices which are

i needed in the explicit evaluation of the dynamic coefficients are listed in
, Appendix A at the end of thismemo.

_ ' A. Gravity Terms
! t

; i In the explicit evaluation of the gravity terms it is assumed that the field of

j gravity is parallel to the Z 0 direction of the base coordinate frame, or in other
l

words, the manipulator post stands gravitationally vertical. Thus, we will use

the following value for the 1 by 4 gravity vectors

o :[0,0,-s,o] (z71

where g = acceleration of gravity. "

I. For joint @Is _,

From the defluin 8 equation we haves

D 1 = miGUllg I �mzGUal]S'2+ n_GU$1P 3 1281 .,.,
.;% ,;,d_

The evaluation of Eq. 1281 yieldss ?_'. ):r

D 1 = 0 129)

jpr Technical MemorandQm 33-669 29
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Eq. (29) is immediately apparent by simple physical reasoning since, by

assumption, the rotation axis of joint motor #1 is always parallel to the field of

gravity, hence joint motor #1 cannot "feel" any gravity torque. This physical

circumstance corresponds to zero values for the vectors GUll, GU21 and GU31

in the defining formula, Eq. (Z8), since the third row of the UII, U21 _nd U31

matrices is zero. (See Eqs. (A. 1, A.2 andA. 3) in AppendixA.) Clearly, if the

G vector would contain components other than G -- -g, that is, if the manipu-Z

lator post would be tilted relative to the local field of gravity, then D 1 would be

different from zero. This is easily seen also from the structure of the U 11'

U21 and U31 matrices.

2. For joint #2:

i _ From the defining equation we have:

i ¢ D z = mzGUzzF z + m'_GU32_ _ (30)l

i i The evaluation of Eq. (30) gives:

" i Dz- g mZ Z+ +r3 sO _ (31)

Eq. (31) is also apparent by simple physical reasoning.

It xs noted that Eq. 131), expressing the gravity torque "felt" by the motor of I

joint 0Z, is already a balanced equation with respect to the sliding of the boom i

relative to the rotation axis of the motor of joint #2. The net ("balanced") value
of the gravity torque acting on the motor of joint 02 is simply expressed in

o

Eq. (31) by the term (_; + r3) since _; is a (necessarily) negative constant,

whileFrom3.Forr3the_otntisdefining(necessarily)o3tequationa positiVewehavetVariable" -,:_!_"_'I_i

D3 = rn3GU33]53 1321 i

30 J,l T.cbnic, biemor.- dum ,3 669 ti.
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_he evaluation of Eq. (32) yields: !:

D 3 -- -m3gcO 2 (33)

I
which is again apparent by simple physical reasoning. Eq. (33) expresses the

accelerating (or decelerating) effect of the gravity as a function of 82 felt by the
motor which drives the boom.

, B. Acceleration-Related Dynamic Coefficients

Due to the symmetry of the DA matrix, only six acceleratio_:-relateddynamic

_ coefficientsshould be evaluated for the dynamic model restricted to the first
i

three link-joint pair_: three "diagonal", and three "off-diagonal" coefficients.

i * 4The "diagonal" coefficients (Dill are related to the total inertia "felt" by the
¢

motor acting at joint "i", due to the motor's own acceleration. The "off-

t *: diagonal" coefficients(Dij, i _ j)are related to the dynamic interaction
I (reaction force or torque) caused by accelerations at joints 'T' and "j". For

instance, the term DI202 expresses the reacO.on torque "felt" by the motor of

joint #I due to the acceleration 02 at joint #2. It is noted that, because the

symmetry D.*. * * * ""
zj= Dji' the same DI2 coefficient will appear in the term DI201

which expresses the reaction torque felt by the motor of joint #2 due to the

acceleration 01 at joint 01.

1. Diagonal Coefficients D_

From the definir_ equation we have: f

* * T
DII = Tr(UIIJ IUITI)+ TrlUzlJzU_I)+ Tr(U31J3U31 ) (34)

* ffi * T

.D33 = Tr $3JsU$3 (35.a1

Here and in subsequent eq_d_ttons In this memo the "Trace" operator will be
abbreviated by "Tr".

JPL Technical Memormsdum 33-669 31

1974008732-039



After considerable algebra and trigonometric simplifications,the following

explicitexpressions are obtained from Eqs. 134), (35)and (35.a):

* 2
Dll = mlklz Z

I Z 3cZSz+ rz(Zyz + rz_+m 2 k_llS282 + k23 136)
f

t +m 3 [k322s v 2 + k333c282 + r3s_82 r 3 r 2

i

D22 = mgk222 + m 3 k311 + r3(2_ 3 + r 3
I

i:
D33 = m 3 138)

" Dealing with linear motion at joint #3, Eq. (38) is immediately obvious. The

"_._...:_:_ " physical meaning o[ Eqs. (36) and (37) is also clear by interpreting the compo-

.-_" nents step by step.

2}_2 ' By examining the exnilcit expressions for D I I' D22 and D33 given by Eqs. (36)
to 138), the following general notes should be made:

• DII is a function of some inertial properties of m 1, m 2, m; and the

variations in 02 and r3. (It is obviously independent of the variation

in @1" ) Furthermore, the constant displacement parameter r 2 also i_

contributes to the value of D I ]. I

D22 is a function of some inertial properties of m 2,_ m__ and the varia

lions in r 3. (It is obviously independent of tho variJtions in O1 and 0 2. )

• In general Dii can be a function of the inortial properties of masses

startin 8 with m i and ondtn| st the mass in tho hand, and c&_ boa
function of variations in jo/nt variables starting at joint I + I and end-

ins at the last joint at the hand.
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The actual dynamical (or load) significance of the different :omponents in

Eqs. (36) and (37) can only be determined if the numerical values of the differ-

ent inertial parameters involved in Eqs. (36) and (37) are known.

2. Off-Diagonal Coefficients DIE, D13, 23

From the definingequation we have:

, + (,,,) ( +T)D12 = Tr U22J2U21 + Tr U32J3U31 (39)

t

D13 = Tr U33J3U31 (40)

* t * T) (41)D23 = Tr U33J3U32

After some algebra and trigonometric simplifications we find the following

explicit expressions from Eqs. (39) to (41):

DI3 = -m3r2s6 ? (43)

D23 = 0 (44)

The physical meaninl of the expressions siren by F..qs. 142) to 144) has been

explained previously. Afiain, the actual dynamic (or load) stsnificance of the

DI2 and DI3 forms can only be eval,_sted if the numerical values of the pertinent

inertiaL imrameters are known. + ,_
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¥I. COMPLETE DYNAMIC COEFFICIENTS FOR i,
ALL SIX LINK-JOINT PAIRS t

_,,'-this _:ectio!_we consider the JPL RRP manipulator i,_an unrestricted state i

of motion compatible with structural, power, performance, instrumcntation, t]

work space, and other possible constraints. It is now assumed that several s

or all six links can move (or will move) relative to each other simultaneously !;

when the manipulator performs a given task. In other words, we consider now i

the dynamic coefficients in the manipulator equations oi motion as functions of+

all possible manipulator motions. This amounts to specifying the complete

state functiot,s for the dynamic coefficients in explicit terms. The complete

. state functions for the dynamic coefficients relate the values of each individual

coetiicient in explicit function terms to all pertinent link inertia characteristics

• and geometric parameters, as well as to all possible configuration of the manip-

ulator (that is, to all possible variations in all pertinent joint variables).

,i In this memo, the complete state functions will be evaluated only for the follow- i
+i "_ f

ing dynamic coefficients: the six gravity terms in Eq. (18), and the six diagonal
,,

+ elements of the DA matrix in Eq. (19); that is, the six acceleration-related ,

: uncoupled terms in the dynamic equatlons. The off-diagonal acceleration-

i .+
::'} related coefficients,as welt as the velocity-relatedcoefficientswill be treated

I_" in subsequent memos

f|:_i_?:_: The explicitmatrix functions for the Uii partialderivative matrices which are ,J

i):_] needed in the explicitevaluationof the dynamic coefficientsare listedin b ppen-

_'_+_:_ dix A, while the six "pseudo inertiamatrices" are listedin Appendix B at the

end of thismemo. The trigonometric short notations specifiedin the previoussection will also be used in this Section. Additional short notations applied in +

I this Section are:
sin (8 i+ 8;)j _ s(8 i+ 8;) +_++J

__,) t- '_+
cos (8 i _ J A c(Si+ 8? ! ,

sZleisin 2 (6 i + 811 _ + @j) i_++._%

cosz (ei + ej) 4 cZlei + ej) ;++
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As in the previous Section, reference should be made to Fig. Z which shows the

actual link, reference frame and joint variable relatiops. Ttle sense of mea- !

surement for the e 1, 0 Z and r 3 variables has been specified in the previous

Section. As described in general terms in Ref. 1, the last three revolute I
t'

(wrist) joint variables, 04 , 05 , and 06, are measured in the following sense: ,.

O4 = the angular displacement of the X4 axis relative to the X3 axis,

positive in the right hand sense about the Z 3 axis. t

85 = the angular displacement of the X 5 axis relative to the X4 axis,

_: positive in the right hand sense about the Z4 axis.

0 6 = the angular displacement of the X6 axis relative to the X 5 axis,

• _ positiveillthe righthand sense about the Z 5 axis. _!

A. GravityTerms inComplete Form

As inthe previousSection,itisassumed again thatthemanipulatorpost stands
i

gravitlationatlyvertical.That is, Eq. (L7)isused forthe 1 by 4 gravityvector n

G.

1. For _oint #1:

From the defining equation we have:

D I = mlGUII_ 1 + m2GU21P 2 + m3GU31P 3

+ m4GU41"P4 + m5GU51P'5 + m6GU61 _6 (45) t: i

= 0 (46) _' ,'¢

Eq. (461 is immediately obvious for the same reason as outlined in connection _=_)_
with D I = 0, Eq. (29), in the previous Section. The additional remarks made :_'_:_
there are also valid here. Eq. 146} simply means that the motor of joint #I ??'-_

cannot Ieel any graviW torque. F__JPI_ Technical Memorandum 33-669 35 ,
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i

i
2. For joint _2: I

From the defilling equation we have:

D 2 = mzGU22"P 2 + m3GU32P-- 3 + m4GU42P 4 1

i:
+ msGU Zp'-5 + m6GU62g 6 (47)

The evaluation of Eq. (47) y:etds:

Comparing Eq. (48) to the corresponding expression for the restricted model,

Eq. (31}, it is seen that changes in the wrist configuration (that is, variations

of the wrist joint variables 84, e 5 and e 6) produce a gravity torque effect felt i_,

by the motor of joint #Z in a functionally complicated form. It is noted that _ ,

Eq. (48) is already a balanced equation with respect to the sliding of the boom l:i_:-

relative to the rotation axis of the motor of joint #Z. This is true for the same

reason as outlined in connection with Eq. (31) in the previous Sect/on. _,
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3. For joint #3. !

From the defining equation we have: l

i

D 3 = m3GU33P-- 3 + m4GU43"P 4 �msGU53P-5 + m6GU63P 6 (49) i

!

Evaluation of Eq. 149) yields:

i D 3 = -g(m 3 + m 4 + m 5 + m6)c02 (50)

which is physically apparent Eq. (50) expresses the accelerating (or deceler-

ating) effect of the gravity force as a function of 0 2 , felt by the motor which

i I drives the boom. Eq. _50) is completely equivalent to Eq. (33) since, in fact,!
t ,

i m3 m3 + m4 + m5 + m6"
?

4. For jcint #4:

From the defining equation we have: i

j
i, D4 = m4GU44_4 + m5GU54g 5 + m6GU64g 6 151) }

,-2,_:_:' Evaluation of Eq. 151)yields:

! [ ] 'D 4 = g -m4_4s04 +m5g5c04s0 5 + m6_6+r6)c04s05 s0 2 (5Z) i'

Eq. (SZ) expresses the gravity torque felt by the motor of joint #4 as a function I

of the variations in the joint angles 0 2, 04, and 05. I

'l
5. For _oint #5:

From the defining equation we have:

D 5 = msGU55_ 5 + m6GU65_ 6 1531

/PL Technical Me-aorandum 33-669 37 I
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Evaluatmn of Eq. (53) gives: f

t
1
i

D 5 = g [m5-Z 5 + m6(-_ 6 + r6)] (sO2s84c@ 5 + cezs05) (54)

I

i;
Eq. (54) relates the gravity torque feltby the motor of joint #5 to the variations Z

of the joint angles 8Z, 84 , and 85 .

6. For joint #6:

_ From the defining equation we have:

D 6 = m6GU66P 6 (55)

" _ The evaluation of Eq (55) yields:

i '% = ; i
i D 6 0 (56)
i i

i¢
I

.'_'_ Eq. (56) is physically apparent, since the center of mass of link #6 is along the

z 6 axis which is the rotation axis of the motor rotating link #6. It is noted that

the hand is inertially part of link #6.

F

B. Acceleration-Related Uncoupled Terms in Complete Form _

The Diiq i type terms in the dynamic equations, Eqs. (lZ) to (17), are called in

this memo the "acceleration-related uncoupled terms". The notion "uncoupled"

is meant to signify that the inertia load felt by the motor of joint "i" is being

dynamically generated by the acceleration of the same joint "i" (and not by the

acceleration of some other joint "j"). The dynamic coefficients Dii belonging c

to the "accel ,..ration- related uncoupled terms" are the six diagonal elements of _;,_

the D A matrix given by Eq. (19). Thus, the dynamic coefficients Dii are

related to the total inertia felt by the motor acting at joint "i", due to the ,_

acceleration of the same joint. _:

l
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In this subsection the complete state functions for all six D.. dynamic coefficients
II

will be evaluated. The complete state function srjecifies the value of D.. in
11

terms of all pertinent inertial and geometric parameters of all _ix links, as well

as in terms of all six pertinent joint variables. Since the manipulator dynamic

model is now no_trestricted to _he first three link-joint pairs, it can be expected [

that the resulting expressions for Dii will be considerably more complicatedg_
than the state functions for D.. treated in the previous section. It is reminded

11

that the values of D.. are restricted to variations in the first three joint vari-
• . ll

,i

ables only.

_ I. For joint #I:

From the defining equation we have: "_

T T T

T
+ Tr (U41J4U4TI) + Tr (U5135U51) + Tr (U61J6U_I) (57)
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After lengthy algebra and trigonometric simplifications the evaluation of

Eq. (57) yields the following state function for D 11:

2
DII = mlkl2 2



The first three terms in Eq. (58) are identical to the terms for D ll given by
2 2

Eq. (36), except that in Eq. (58) the "star" (*) is removed from m 3, kBz Z, k333,

and -z3' These four "unstarred" values in Eq. (58) refer to tbe third link only.

The last three, long, and complex terms in Eq. (58)-- that is, those multiplied

by m 4, m 5, and m 6- account for the configurational inertial effects of the

motion of the three wrist joints, joints _4, #5, and #6, as "seen" by the DII01

term in the dynamic equation for joint #I, Eq. (IZ). Alternatively, if the con-

figuration of the wrist joints is fixed during motion of joint #I, then the m 4, m 5,

' m 6 terms in Eq. (58) all together represent only one compounded, constant

inertia number belonging to the particular, fixed configuration of the wrist joints.

This constant inertia number can be used for D 11 to replace the "starred"(*)2 2

values of m 3, k322, k333, and _'3 in Eq. (36) simply by adding this constant sum-
' 2 2

ber to Eq. (36); in that case, the "unstarred" m 3, k322, k333, and _3 values in

Eq. (36) refer to the third link only.

i It is seen from Eq. (58) that the configurational inertial effect of the different

i" ! links as "felt" at joint #1 becomes more and more complex as we move toward

the free end (the hand) of the chain of links The most complex configurational$ *

! ' { inertial contribution comes from the last (#6) link.

It is noted that further trignometric simplifications would be possible for the

m 4, m 5, m 6 terms in Eq. (58). The simplifications are not carried out, how-

ever, since they do not seem to illustrate major physical points.

Z. For )oint #2:

From the defining equation we have:

T
1)22 = Tr (U22JzUT2) + Tr (U32J3U32) + Tr (U42J4uT2)
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t

Again, after lengthy algebra and trigonometric manipulations, the evaluation of

Eq. (59) gives the following state function for D2Z: I,

D22 = m2kzz 2

1
I

+m3 Ik2311 + r3{2_3+ r3)] 1

r

cZe4cZos+ Z z Z Z Zi, +m 5 [kZsll ksz2S 04t k533c 04s 05 + r3(r3+ 2_5c05) ]

+ m 611 k_l I [(s206 " c 206) {s204c205+ s205- c204)

': "- ""i + c05(c05 " 4se4cO4s°6c°6) + sZO4sZ°5]- : I 2 .
+_ k622 [(c2% s206)(s204c205 �sZe5- c204 )

,_2, + c051c05 + 4sO4cO4sO6c06) + sZe4s205]

z z +[,_(z,6¢os+ +_[(,zo4,zo +dos)]+ k633c 04sZe5 r3) 5

+z_6[('3 �r6%)COs+r6"%4'ZOS]l
(6o)

i

The first two terms in Eq. (60) are identical to the terms for D_._22 given by

Eq. (37), except that in Eq. {60) the "star" {*) is removed from m 3, k211 , and

"i3. These three "unstarred" values in Eq..{60) refer to the third link only.

The terms with m 4, m 5, and m 6 in Eq. {60) account for the conflguratiorml
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inertial effects of the motion of the three wrist joints (joints #4, #5, #6) as seen
,.

by the DZZ82 term in the dynamic equation for joint #Z, Eq. (13). Alternatively,

if the configuration of the wrist joints is fixed during motion of }oint #Z, then the

m 4, m 5, m 6 terms in Eq. (60) all together represent only one compounded, con-

stant inertia number belonging to the particular, fixed configuration of the wrist

joints. This constant inertia number can be used for D22 to replace the

2 and -z in Eq. (37) simply by adding this con-"starred"(*) values of m 3, k311, 3
Z

stant number to Eq. (37); in that case, the "unstarred" m 3, k311, and z 3 values

in Eq. (37) refer to the third link only.

It can be noted again that the configurational inertial effect of the different links

as "felt" at joint #2, becomes more and more complex as we move toward the

free end (the hand) of the chain of links. The most complex configurational

inertial contribution comes from the last (#6) link. Comparing the m 4, m S ,

[ and m 6 terms of Eq. (60) to those of Eq. (58), it is seen, however, that joint #Z!
! "feels" the configurational inertial effect of the three wrist links through terms

: which are "simpler" than the corresponding terms of joint #1.

' 3 For joint #3:

l ' "
, " From the defining equation we have:

• " D33 = Tr (U33J3uT3) + Tr tU43J4U43) _ Tr (U53J5uT3)

_._-__ " + Tr U63JU 161)

which give s

I D33 m]+ m 4+ m 5+ m 6 162)

Z

Dealing with linear motion at joint #3, Eq. 162) is immediately obvious. (In

fact, it can be written down without going through the transformations indic&ted

by Eq. (61).) It can also be noted that Eq. (62) is completely identical to the

expression for D33 givenb} - Eq. (38), since, in fact, m;"m 3+m 4+ m 5+m 6.
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in other words, D33 i._ independent of any arm link configuration, it is a

constant. The value of D33 will only be changed when the hand grasps an object. I:
In that case, the mass of the object should simply be added to Eq. (6Z), or more

precisely, to the value of m 6.

4. For joint #4:

From the defining equation we have: t

= T
._ D44 Tr (U44J4u4T4) + Tr (U54J5U54) + Tr (U64J6U_4) (63,

; , Evaluating Eq, (63) results in the following function:

i

j.
R

i i + m5(k_llS205 + k_33c205)

• : + m 6 k 11 + x622s vss v6 �k

�r6(2-_6 + r6)s205)l (64)

Eq. (64) is physically apparent, and can easily be interpreted term by term.

The similarities and dissimilarities of Eqs. (64) and (36) are also noteworthy.

5. For joint #5:

From the defining equation we have: ?

it • .-

?See also remark at the end of this section.
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which yields the following explicit state function:

I:

Z
D55 = rusk52 z

c 2 k_22s205 r6(+m 6 [k_l I 05+ + Z-z6+ r6) ] (66)

t

Eq. (66) is also apparent physicalty, and can easily be interpreted term by term.

The similarities and dissimilarities of Eqs. (37) and (66) are again noteworthy.

6. For joint #6:

From the defining equation we have:t

( ,

I i = Tr (U66J6U_6) (67)
; _ D66 i

, i
which gi_es

.--,__- D66 = m6k_33 (68)

Eq. (68) is obvious. In fact, it can be written down immediately without going

through the formal transformation indicated by Eq. (67).

Bemark ]The formal definitions for D44, D55, and D66 given by Eqs. (63), (65) and (67)

involve a great deal of unnecessary computations. By noting that D44 only

depends on the inertias of links 04, #S. and 06. while DS5 only depends on the

tSee atso remark at the end of this section.
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.d

inertias of links #5, and #6, the f,_llowing corr_putationally more convenient
J

de.finitions can be {and have been) used for D44 and D55:

= + QT 3T4 IT ,

r QT3T4T5

In a similar manner, we can also write for D66:

But even the evaluation of this last expression for D66 is unnecessary since

Eq. (68) can be written down immediately.

The mathematical deriration of the simplifications introduced here in the

general algorithmic definition of D.. is treated in detail for all manipulator

dynamic coefficients in Appendix D at the end of the report.
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VII. CONCLUSIONS

Values of total link inertias and the different torque/force components acting

at the manipulator joint drives are essential parameters for manipulator control

system design. It is seen frc n the dynamic equations derived for the JPL

RRP manipulator that there is no si_nple proportionality between torque (or

force) acting at one joint and the acceleration of the same joint when several

joints are in motion simultaneously. Even if only one joint moves at a given

time, the proportionality between torque and acceleration is a complex function

of the actual configuration of alllinks ahead of the moving joint,that is, of all

_ links between the rnovil,g jointand the hand, including any load in the hand.

In the case of simultaneous mot1,_nof several arm joints,the torque (or force)

i acting at each joint is the sum of a number of dynamic components which can, be classifiedintofour groups: (a)inertialacceleration of the joint;(b)reaction

torques or forces due to acceleration at other joints;(c)velocity-related :

I* (centrifugaland Coriolis) reaction torques or forces; and (d)gravity terms. :

Obviously. the gravity terms are onl- dependent on the relative position of the ;

links, while all other dynamic components are dependent on both the configura-
tion and the dynamic state (relative acceleration and velocity) of the links. |

l
The explicit state equations derived in this memn for some of the dynamic

coefficientsof the JPL RRP manipulator allow important quantitativeconc_u- ]

sions regarding variations in total link inertias and gravity loads as seen at !

the different joint drive motors during arm motion. Further, the explicit state I

[equations of the inertial (diagonal)and acceleration-related reaction (off-

diagonal) dynamic coefficients derived for a restricted manipulator dynamic

model allow a general quantitative evaluation of the relative importance _f some

of the acceleratlon-related torque/force reaction components versus ine: '_1

torques/forces.

The constant geometric and inertial parameters for the SPL RRP marApulator

used in the subsequent evaluation are identical to those determined and

compiled elsewhere. * (Parameter values are also listed in Appendix B. )

• Walker, B., "RRP Manipulator Inertial and Mass Distribution Characteristics, "
31_L ION[ 345-4-75-14Z, Z8 February 1773.

Dobrotin, B.M., "Input Shaft Inertias fo_ RRP ]M[_pul_tor, " JPL
IOM 343-4073-268, 13 April 1973.
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A. Variations in Total Inertia at the Joints

The total link inertias as scen at the different joints are given by the diagonal

elements Dii of the DA matrix defined by Eq. (19). The complete state equa-

tions for the Dii dynamic coefficients are given by Eqs. (58), (60), (6Z), (64),

and (68). These equations on!y refer to the mechanical structure of the manip-

ulator. Changes in these equations due to a load held in the hand are elaborated

in Appendix (5.

In the subsequent evaluation of variations in total inertias we compute the

maximum variation in D.. with and without load in the hand as well as the mini-lz

mum value of D.. without load in the hand. The assumed load is a 1.8 kg,LL

442 crn 3 cube, placed with its mass center at the origo of the hand (X 6, Y6'

Z6) coordinate frame. In the computations, the constant and varying* compo-
nents of D.. are treated separately. AI! computed values are referred to the

; 11

output at the respective joints, including the input inertias at the joint drives.

As seen from Eqs. (58), (60), and (64), the variations in D 11' D22' D44 are

functions of several joint variables. Thus, an analytic search for maximum

. values of D 11' DZ2' D44 would imply the determination of hill tops of surfaces
or hypersurfaces. Instead of this mathematical technique, we apply physical

: reasoning and select an appropriate (and allowed) set of joint variables which

_ will yield the searched maximum value for Dii.
I

': _ 1. Inertia Variations Seen at Joint #1

:_- The value of DII given by Eq. (58) specifies the variations in the total inertia

_i felt at joint #I as a function 0fch¢ joint position vector q,
a) Constant components of D 1I: i

2
Input inertia at joint No, 1 = 0. 953 kg. m i

z i
2 = 0. 255 kg. m+ mlklz 2 Z I:

+ 2m2Yzr 2 = -0. 192 kg. m i _

+ (m 2 + m 3 + m 4 + m5)r _ = O. 320 kg. m 22
Total constant = 1. 318 kg. m

*Variations due to changes in both link motion and load held in the hand.
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b) Maximum variations ]_ Dll:

Assume: 82 = +cO deg (horizontal orientation uf the boom)

r 3 = 111.76 cm (maximum extension of the boom}

04 = 0 deg (see Fig. Z)

05 = 0 deg (see Fig. 2)

06 = 0 deg (see Fig. 2)

The last three conditions will move the mass of the wrist/hand mech-

anism farthest from joint axis #1. Under the five conditions specified

above, Eq. (58) g:,vc_ the _v,,,,'^"....,_,_a..._,comuonents, for Dll in addition to
the constant components.

1 ) With no load in the hand:

2 = O. 108 kg. m 2mzk211

2 = 2.51 kg. m 2 -_+ rn3k32 Z

_* 2

._" . _' + m3r 3 (2_ 3 + r3) = -0.815 kg.m i

: + 112 m4(- k411 + k422

"*:: 2 2
"_': _ +k433) = 0.0002kg. m

2
+m4r 3 (r 3- 2_4 ) -_ 1.332 kg.m

2 2
+ r_5k522 = O. 003 kg.m

2
+ msr 3 (2_ 5 + r 3) - O. 87 kg. m

2 2
+ m6k622 -- O. 005 kg.m

2 2
+m6r 2 = 0.013 kg.m
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i

+ m 6 (r6 + r3)2 = O.96' kg. m 2 !

2
+ 2m6z 6 (r 3 + r 6) = -0. 13 kg.m

Total maxin_um inertia addition,

2 i,with no load in the hand = 4. 857 kg. m

Hence, the maximum total value of inertia felt at joint #1 with no load

in the hand is:

!
Dll, max (no load in the hand) = 1.318 + 4. 857 [

2 1 (69)

= 6, 176 kg.m I

; 2) With load in the hand:
6

Only the m6-related terms will he changed. According toi:
the specifications of the load and the load's emplacement in

i the hand, we will have the following new values for the

_ _i m6- related terms:

...... :. m6k622 = O. 006 kg.m

,:r r3)2 2+ m6(r 6 + = 4. 307 kg. m

2 2
+m6r 2 = 0.061 kg.m

2
Total = 4. 374 kg.m i

|

!
It is noted that the 2m6_b(r 3 + r6) term remains numerically 0

unchanged. Thus, the net maximum inertia change due to
the specified load in the hand becomes:

4. 374 - 0.979 -- 3. 395 kg- m 2
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Hence, the maximum total value of inertia felt at joint #I

with the specified load in the hand is:

D (with load in the hand) = 1. 318 + 4. 857 + 3. 3q5
11, max (70)

2
= 9.57 kg.m

c) Minimum value of DII:

Assume: 0 2 = 0 deg (vertical orientation of the boom)

04 = 0 deg (see Fig. 2)

05 = 90 deg (see Fig. 2)

: 06 = 0 deg (see Fig. 2)
f

i It is noted that the condition 0 2 = 0 deg will make D 1 1 inde-

lz i: pendent of r 3. Further, the condition {_5 = 90 deg will move _,•

i the mass of the wrist/hand mechanism closest to joint axis :

#1 Under the four conditions specified above, Eq. ,_3)

": _ yields the following components for D 11 in addition to the _,

constant component s:

2 = O. ] kg.m 2m2k233

2 2

+ m3k333 = 0.006 kg.m

2 2
+ m4k422 = 0.001 kg.m

+ m5k 11 = 0.0n3 kg.m

2
- 2m5_sr 2 = -0.012 kg.m

2 2
+m6k611 - 0.005 kg.m
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rz)Z Z+ m6(r 6 - = 0,004 kg.m

2
+ 2m6_,6(r0 - r2) = -0.008 kg.m

Total minimum inertia addition, with no ,

load in the hand = 0. 099 kg. m

Hence, the minimum total value of inertia felt at joint #1°

with no load in the hand is:

DII ' rain(nO load in the hand) = [. 318 + 0. 009
z (71)

= 1.417 kg.m

i
4

,( In summary, the following ratios (relative values) can be formed for inertia

• : variations seen at joint #1:t
i

i
1

,; Dll ' max(nO load in the hand);' :_ '_" = 4. 36 (72)

_i - DI I, rain {n° load in the hand)

DI l, max (with load in the hand)
= 6.75 (73)

DI 1, rain (n° load in the hand) i

2. Inertia Variations Seen at $oint #2

The value of DZ2 given by Eq. (60) specifies the variations in the total

inertia felt at joint #Z as a function of the joint position vector q_.

a) Constant components of _)ZZ:i i i .

2
Input inertia at joint #2 = 2. 193 kg. m

2
+ m2k222 = O. 018 k_. m 2

Z Z
+ m3k311 = 2.51 ks.m

Total constant = 4.7Z 1 1¢41.m
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b) Maximum variations in D22:

Assume: r 3 = 111.76 cm (maximum extension of the boom)

04 = 0 deg (see Fig. 2)

05 = 0 deg (see Fig. Z)

06 = 0 deg (see Fig. 2)

Under these four conditions, Eq. (60) gives the following components

for D22 in addition to the constant components.

1) With no load in the hand:

2
m3r3(Z_3 + r3) = -0.815 kg.m

2 = 0. 002 kg. m 2+ m4k411

2

"i_ + m4r3(r 3 - 2_4) = 1. 332 kg. m
!

2 = O. 003 kg. m 2
,_ i + m5k511

i / i

: _ + m5r3(r3 + 2_5) = O. 87 kg. m

i +m6k 11 = 0.005 kg. rn 2

2
+ m6r3(Zr6 + r3) = O. 929 kg. _

2 2
+ m6r 6 = O. 03Z kg. m i

t

_-6( ,+ Zm 6 r 3 + r6) = -0. 13 kg. m 2 [_

• n

Total maximum inertia addition, with
2 ;7/

no load in the hand "" 2. 228 kg. m
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i

,d

tIence, the maximum total inertia value felt at joint /_2 with no load

in the hand is:

•

DZZ ' max(nO load in the hand) = 4.721 + 2.228
Z (74)

I = 6. 949 kg. m ',,

Z) With load in the hand:

Again, only the m6-related terms will be changed. According to

the specificationsof the load and the load's emplacement in the

hand, the following new values are obtained for the m6-related
terms:

t _' 2 2
m6k6 = 0,006 kg.m' _ 11

2
+ m6r3(Zr 6 + r3) = 4. 165 kg.m

+ m6r _ = O. 142 k[_,m 2t
Total = 4.313 kg.m

r,_ | #

i Itis noted again that the 2m6_6(r 3 + r6) term remains unchanged#

i numerically. Thus, the net maximum inertia change due to the i

| - specified load in the hand becomes:

2
4.313 - 0.965 = 3.348 kg.m

Hence, the maximum totalv_lue of inertia feltat joint#2 wit__h

the specifiedload in the hand is:

ID | L • , •

22. max (with l°ad in the hand) = 4.721 + 2. 228 + 3. 348

= 10.297 kg.m 2 (75)
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c) Minimum value of D22:

Assume: {34 = 0 deg (see Fig. 2)

05 = 90 deg (see Fig. 2)

06 = 0 deg (see Fig. g)

* The condition 05 = 90 deg will move the mass of the wrist/

:_ hand mechanism closest and parallel to joint axis #Z. It

is noted that no assumption can be made for r 3 yielding

*:_ D22 ' •
rain' instead, it has to be computed as follows.

Under the three assumptions specified above Eq. (60) yields the following com-

ponents for D22 in addition to the constant terms:

m4k211 0.00Z kg. m 2
t

_ 2 2 '
i + m5k533 : 0.0004 kg.m

,j

: + m6k_ 33 2= 0.0003 kg.m

Total = 0. 003 kg.m

Further, we will also have r3-dependent terms forming a quadratic expression:

_(r 3) = Ar 2 + 2Br 3

where

A = m 3 + m 4 + m 5 + m 6 = 6. 474 kg

B = m3_ 3- m4_ 4+mSg 5 = -2.71k_.m

SPI_ Technical Memorandum :33-669 S5
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The value of r 3 yielding _min is obtained from

d_' B

dr---3 = 2_Ar3 + 2B = 0===_r3, extremum = "_" = 41.9 cm

Consequently, we have

2
_min = -I. 135 kg.m

Hence, the minimum totalvalue of inertiafeltat joint#2 with no load in the

hand is:

D22 ' min(nO load in the hand) = 4.721 - I.135 + 0.003
z (7s)

= 3.589 kg.mI
j.

!

i In summary, the following ratios (relative values)can be formed for inertia
" variations seen at joint#2:

t

• . D22 ' maxlno load in the hand) = 1.95 (77)
_ D22, rain(no load in the hand)

i

D22 'max(with load in the hand) (78)
---- 2,9

D22, rain (no load in the hand)



D33 ,max(no load in the hand) = Equivalent input +m 3 +m 4+m 5 + m 6 =
(79)

D33 ,rain(no load in the hand) = 7.257 kg

t
• ,

1
q

D33 ' max(with load in the hand) 9.057 1.25 (80)

D33 ' rain(nO load in the hand) - 7. Z57

4. InertiaVariations Seen at Joint #4
T

The value of D44 given by Eq. (64)specifiesthe variations in the totalinertia

felt at joint #4 as a flxnction of the relevant components of the joint position

vector _.

i a) Constant components of D44:

i Input inertiaat joint#4 - 0. 106 kg.m 2
;
; 2 = 0.001 kg.m 2
i + m4k422

[ Total constant = 0. 107 kg. m 2
f

I b) Maximum variations in D44:t

Assume: 85 : 90 deg (see Fig. 2)
V

It turns out that D44 will be independent of E)6 for any value of E)5 since

k_l I = k_22 for the $PL RRP manipulator resulting the identity

sin206 + cos206 = I for the k_l I terms in Eq. (64). According to the

85 = ?0 deg condition specified above, Eq. (04) gives then the following

components for D44 in addition to the constant terms. ,.
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1) With no load in the hand:

m5k _ = 0.003 kg.m 2II

+m6k_l I = 0.005 kg.m 2
f

2
+ m6r6(Z_6 + r6) = 0.008 kg.m

Total maximum inertiaaddition,with no
2

load in the hand = 0.016 kg. rn

', Hence, the maximum totalinertiavalue feltat joint#4 with no load

i in the hand is:

l[ D44 ' maxlnO load in the hand) = 0. 107 + 0. 016z (81)
: _ = O. 123 kg.m

2) With load in the hand:

Only the m6orelated terms will be changed, According to the

specificationsof the load and the load's emplacement in the hand,
J

we will have the followingnew values for the m6-related terms: il

m6k II = 0.006 kg.m

+m6r6(Z_ 6 + r6) = 0.118 kg.m 2 +

Total = 0.124 kg.m 2 _

Thus, the net maximum inertia change due to the specified load in the _';
__" hand be come s:

i 0.124- 0.013 = 0.III kg,m 2 v
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Hence, the maximum total value c. inertia felt at joint #2 with the

specified load in the hand is:

D44, max(with load in the haad) = 0. 107 + 0.016 + 0. 111
2 (82)

= 0.234 kg.m

• c) Minimum value of D44:

_: Assume: 05 = 0 deg (see Fig. 2)t

According to this condition, Eq. (64)yields the following components in addition

to the constant terms:

i 2 : 0. 0004 kg. m
m5k533

' 2 2
+ m6k633s = O. 0003 kg.m

i
i • Total minimum inertia addition, with

l •': no load in the hand = 0.001 kg • m 2

Hence, the minimum totalvalue of inertiafeltat joint#4 with no load in the

hand is:

D44 'rain(nOload in the hand) = 0. 107 + 0.001 (83)

= 0. 108 kg.m 2

in summary, the following ratios (relative values)can be formed for inertia

variations seen at joint #4:

D44 max(no load in the hand = 1.14 (84)
D44, rain (no load in the hand)

s
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D44 ' max(with load in the hand) (85) _,=Z. 17 '_

D44 ' rain(nO load in the hand)

It is noted that the extremum (minimum and maximum) values of D44 can also

be determined without any assumption on e 5, since Eq. (64) is a function of
one variable:

!

D44 asin2{}5 + bcos2e= 5+C,
t

whe re

a = 0.015 kg.m z }b = 0.001 kg. rn 2 no load in the hand

( Z
_. c = 0. 107 kg.m
i"
!

i The extremum of D44 witl be obtained at 05 values which satisfy

0 • _ dD44

"-_'_i "_5 = 2a sine 5 cose 5 - Zb sine 5 cose 5 : 0

That is,

_ sin 2%5 (a- b) = 0

since a _ b, we must have sln 2 65 : 0 which yields 65 : 0 or 90 deg. For

(}5 = 0 des we will have minimum value for D44 ii

D44. min = b+ c = 0.108kg. m 2 i _-

while for 05 ffi90 de8 we will have maximum value _::_ _-

D44,max iql- m 2 _.._:5
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5. Inertia V_riations Seen at Joint #5

The value olD55 g;x,c, byEq. (66) specifies the variatio,_s in the total inertia

/nit at joint #5 as a ful:ction of 05 . It turns out, however, that D_ becomes
2 2 . "-

independent of.05 si:me .611k = k6.__ for the_ JPL RRP manipulator resulting in

the identity sin 05 + cos 05 = 1 for tne k6i i terms in Eq. (66_. Consequently,

only the inertia properties of a load held by the hand can change the value of

D55. Hence, we will have the following values for D55.

a) No load in the hand:

a
Input inertia at joint #5 = 0.098 kg.m

2
= 0.003 kg.m 2+ m5k52 z

' i

¢ + m6k_ll = 0.00_ kg.m 2

' _ + m6r6lZz 6 + r.)o_ = 0.008 kg.m4

Total = 0. 114 kg.m
i
!

i ... Hence,

ii

2

• - D55, max = D55, rain (n° load in the hand) = 0. I14 kg.m (86)
i

_ _,_. b) With load in the hand:

!
_ We will have the following new values for the m6-related terms due to

the specified load:

m6k611 = 0.006 kg.m 2

+m6r6(2_ 6+ r 6) = 0.118 kg.m Z

2
Total = 0. 124 kg.m
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Thus, the net inertia change due te the specified load in the hand becomes:

2
O. 124 - 0.013 = O. III kR.m

Hence, the total value of inertia felt at joint #5 with the specified load in the

hand is:

21D55 ,max(with load in the hand) = 0.225 kg.m (87)

In summary, the following ratio {relative value) can be formed for inertia

! variatien due to the specified load in the hand:

, i

_ D55 ' (load in the hand)_ max = 2.0 (88)
_ D55 '• '. • rain (no load in the hand)

6. Inertia Variations Seen at Joint #6 i

|/-o: As seen fromEq. 168), D66 is a constant. We have then:

2
...._, Input inertia at joint 06 = 0.0Z kg. m

Z 2
+ m6k633 = O. 0003 kg-m

2
Total = 0.02 kg.m

Hence,

2 _

D66, = D66, rain (no load in tt_e hand) = 0.02 kg. m 189) ,_;a:max k:!_

' ' ' ,¢:"
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If the specified load is held by the hand, we will have:

2 2

m6k633 = 0.002 kg.m

Hence, the variation in inertia due to the specified load in the hand is

" 0.295 - 0.049 = 0.002 kg.m

;_:_ yielding

_: D66, max (load in the hand} = O, 02 + O. 002
+ 2 (9o)
_ = O. 022 kg.m

i
. In summary, we have the following ratio for il_ertia variation due to the ;

i"
; specified load in the hand:

• '_+ (with load in the hand) |
i : _" D66pmax = 1.09 (91)

D66, rain i-loload in the hand) t

All computed exact total inertia variations are summarized in Table I and dis-

played in Figure 3.

B, Maximum Gravity Load Variations

The gravity load felt at the different joints as a function of the total joint posi-

tion vector q is given by Eqs. 1461, 148), 150), 15Z), 1541, and 1561. As seen

Crom Eqs. (46) and (56), there is no gravity load at joints #I and #6 since

D 1 = D 6 = 0 always, because, by assumption, joint axis #I is gravitationally

always vertical, and x6 = _6 = 0 even with load in the hand if the mass center of

the load is placed at the origin o£ the hand coordinate frame (X 6, Y6' Z6) or

along the Z6 axis. Assuming again a (I. 8 kg) load and symmetric emplace-

ment of the load in the hand, we compute the maximum gravity torques

!sm_ JPL Technical Memorandum 33-669 63
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(or force) as seen at joints _2, 3, 4, 5, referred to the respective joint

output s.

As seen from Eqs. (48), (5Z), and (54), DZ, D4, and D 5 are functions of several

joint variables. Thus, a mathematical search for maximum values of DZ, D 4

and D 5 would mean to determine hill tops of surfaces or hypersurfaces. By

physical judgement, however, an appropriate and allowed set of joint variab!es

can be selected for each gravity term yielding the maximum value for D.. (It1

is noted that the minimum value of any gravity term for the 5PL RRP manipula-
t

tot is zero. )

, The subsequent calculated gravity loads should be interpreted as absolute

values. The • polarities can be indicated according to the appropriate joint

variable value s.

i 1. Gravity torque at joint #1

k

4 _, D - o (gz)
}" i 1

_" :_l Z. Gravity torque at joint #Z
|

a. Maximum value with no load in the hand.

Assume:

0 Z = ±90 deg (horizontal direction of the boom)

r3 = III. 76 cm (maximum boom extension)

0 4 = 0 deg (see Fig. 2)
,/

05 = Odeg (see Fig. 2) if /illI
0 6 = 0 deg (see Fig. 2) I !: _"

5 "r
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The last three conditions will move the mass center of the wrist/hand mechanism

farthest from joint axis #Z in a horizontal direction. Under the assumptions '

specified above, Eq. (48) will give the following terms:

I

mZz 2 = -0.0445 kg.m

+ m3(z 3 + r 3) = 2. 0072 kg.m

+ m4(r 3 - _4 ) = 1. 201 kg. m

+ m5(z 5 + r3) = 0.7423 kg.m

+ m6(z 6 + r6) = 0.0806 kg.m

f

+ m6r 6 = 0.5755 kg.m

! Total = 4. 562 kg .m

i"

i Hence,

'" _" D2, max (no load in the hand) = 4. 562 g = 44.75 N. m (92a) i

1%'II. _ " I It

- b. Maximum value with load in the hand:

The m6-relaced terms will have the following new values due to the specified
load in the hand:

m6(_ 6 + r 6) = 0.5254 kg.m

m6r 6 = Z. 5826 kg.m

L

Total, together with
unchanged te rms = 7.011 kg. m

| ,

g = acceleration of gravity -- 9. 81 m/sec 2
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Hence,

D2, max (with load in the hand)=7.011 g 68.77 N. rr, (93)

It is easily seen from Eq. (48) that for 0 2 = 0 deg, 04 = 90 deg and 05 = 0 deg
we will have

DZ, rain = 0

3. Gravity force at joint #3

a. Maximum value with no load in the hand:

!

It is obtained at 02 = 0 (or 180) deg, that is, having the boom in vertical

i direction. We have then from Eq. (50):

D3, ma X (no load in the hand) =(6.474 kg) g = 63.5 N] (94)

I " , L i_-? : b. Maximum value with load in the hand:

'-' t We will have for the specified load:

.--;;.i I D3, I

':-.,' 1 lwith load in the hand) = 18.274 kg) g = 81. 17 N 1951max

Obviously, for 02 = • 90 deg we will have

D3, mi n = 0 i

P
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4. Gravity torque at joint 24

a. Maxinmm value with no load in the hand:

Assume:

02 = ±90 deg

04 : 0 deg

05 : ± 90 deg

, Equation (52) yields then the following terms:

m5z 5 = 0.0359 kg.m

i _ -- 0.0801 kg.m
t m6(z6 + r6) :

• I Total = 0. 116 kg. mi'

t

i Hence,
'J .

max (no load in the hand) = 0. 116 g = 1. 138 N.m 196)

b. Maximum value with load __nthe hand:

The m6-related term will have the following new value due to the specified
load in the hand:

m

m6(s 6 + r6) = 0.525 kg.m

Hence,

D4, max (with load in the hand) = 0.561 g = 5. 503 N.m (97) •
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Obviously, for 02 = 0 deg we have

D4, rain = 0

5. Gravity torclue at joint #5

a. Maximum value with no load in the hand:

Two sets of assumptions can be made:

02 = +90 deg 02 = 0 deg

04 = +90 deg 05 = :k90 deg

0 5 = 0 deg
t
' ;

, Then, from Eq. 154) we will have:

m5z 5 = 0.0359 kg.m

:" + m6lz 6 + z 6) = 0.0801 kg.m

., Total = 0. 116 kg.m

_ ,,_ence,

D5,ma x (no load in the hand) = 0. 116 g = 1. 138 N.m ] (98)

b. Maximum value with load in the hand:

The m 6- related term will have the following new value due to the specified
load in the hand:

w

m6(u 6 + r 6) : 0.525kg. m
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.*fence,

D5,ma x {with !oad in the hand} =0.561 g = 5.503 N.m I (99}

As seen from the previous equations,

D4 = D5, •,_nax max

6. Gravity torque at joint #6

i D6-01 (100, •

It is noted that Eq. (100) is only true here because of the assumption thati
t _ x6 = Y6 = 0 even with a load in the hand. Suppose, however, that the mass

I center of the load is offfrom the origin of the hand coordinate frame so that

i the net result is, for instance, x 6 = 1 in. In the case of a I.8 kg load thiswill

I produce 0.58 N.m gravity torque at joint #6, for instance, for Oz = 0 deg,
r

All computed maximum gravity load variations at the different joints are sum-

marized in Table a. To complete the summary, Table 2 also shows the maxi-

mum gravity load variations referred to the motor shafttogether with motor

: stall torque and gear ratio.

C. Relative Importance of Inertial Torques/Forces Versus Acceleration-
Related Reaction Torques/Forces

The explicit _tate equations of the inertia terms and acceleration-related reac-

tion torques/forces derived in Section V for the first three link-joint pair_ of - _

the JPL RRP manipulator can be utilized for a general quantitative evaluation

of the relative importance of the related dynamic components in the torque or : _*

force equations.

As seen from the state functions of Dil and Dij developed in Section V, we
have the following acceleration-related non-zero terms in the torque/force

equations for the first three link-joint pairs: _,_F

Dlle I •1�ä T3 + .... • = T I (1Ol)
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.J

D:12°1 02 T2 I1021

_,_ o•

DI3::"01 +D33 r3 --r 3 (103)

Using Eqs. (36) through (38) and (42) through (44) which state the respective

functions for D'_".11and D'I"j, we form the following ratios:

D'_2 - (a 6 + aTr3)c02

R 1 = _ = ] s202 a5c202 (104), DII al + [a 2 +a3r 3 +a4r3 2 +

i ;) D'_3 . a7s02

i , = = s2C2 (105)R2 _ 2O5" Dll al + [a 2 +a3r3 + a4r2 ] +a5cr
D12 - (a 6 + a7r 3) c02 o.

' R 3 (106)
i ---'_- - 2DZ2 a8 _ a3r 3 + a4r 3

DI3 - aTs02
(107)

R 4 = _ = a4
D33

where al, ..... , a 9 are constants with the following values (determined by
using the appropriate "starred" values for the ins .ta of the third link having

the wrist configuration as shown in Fig. 2 and referring inertias to the output):

2
a I = 1.334 kg.m

2
a 2 = 2. 635 kg.m

a 3 = -5. S lr4. m

a 4 = 6.4"14 kg

2
as = 0.108 ks.m
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2
a 6 - -0.453 kg.m

a7 = 1.05 kg.m 2
a 8 = 4.74 _g.m

a 9 = 7.26 kg

The maximum (absolute) value of the ratios specified by Eqs. (104)through {107)

is obtained when the nominator has maximum (absolute) value and the denominator

has minimum (absolute} value.

For the ratio R 1 the maximum value is obtained for 0z = 0 deg and r 3 -- r3, max
t

= 111.76 cm. These conditions give:

!

-- 0.5 11051
l'
I

I The maximum value of R2 requires special consideration. For 02 = 90 deg

I and r3 = 50.8 cm we have

, , = 0.0037 cm -1 11091
¢

For the ratio R 3 the maximum value will occur when 0 2 = 0 de S and

r 3 = III.76 cm.* These conditions give:

R]p l,rl _ =

= 0. II (II0)

*This r 3 value can be oh:slued by computing r3, optimum from the condition
dR3/dr 3 -- 0 for O2 - 0 de s .
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J

For the ratio R 4 the maximum value is obtained when 02 = 90 deg. This gives:

R4,max -lag[- 14.45em (111)

An examination of Eqs. (108) through (111) for the relative ratios leads to

interesting conclusions elaborated briefly below.

conditions, the reaction _orque felt at joint _'1 due to the acceleration at
t i,

. joint #Z will be 5C% of the inertial torque at joint #1. Figure 4 depicts the

ratio R 1 as a functionof 02 for r3 = III.8, 81.3, 50.8 era, respectively. Of
t

' _ course, some of the upper part of the r3 = 81.3 cm and r3 = 50 8 cm • .,'yes

i ', on Fig. 4 are unrealizable for the JPL RRPbreadboard, since some segments
' _ of the upper part of these two curves imply that the boom hitsthe vehicle piat-

: _ form or a wheel, depending on the value of 0 1' Figure 4 is intended to _

_ illuttrate the conditions under which the two torques

_'.- _,.-

• * °l + iiz (ii +RliiZl (llZ)! DI I DI2 = DI I I

* .e

can be approximated by D 1 i01 . A_ seen from Eq. (I 12), the validity of this,o .i

approximation depends on the magnitude of RI02 relative to Jl" It is noted that

the sum (_I + Rle Z) can also attain zero value.
-I

The ratio R z has dimension cm since it is related to the sum of the two
torques

*_l + *"DII Dl3r 3 = Dll(e I +IR_r 3) (I13)

For instsrce, for _l = 0.5 r•d/sec Z, Y3 ffi 12.7 cm/sec 2 and R z = R2, max' tne

dynamic significance of RZ_ 3 is one tenth of the dynamic significance of e I .

The sum {_I + RZ_;3} car _dso be zero. Figure 5 shows RZ •s • function of e 2

for r 3 = III. 5, 81.3, 50.8 cm, respectively. As seen, Rz, max is dependent

of r$.

JPL Techatcal b_morand_m 33-669

n " il

1974008732-083



0.5

r
'z.

0 i _0 20 40 60 80 90

92, DEGREE _:,:

Figure 4. Relative Importance of el fez Coupling
as Seen at Joint 01

76 JPL "£ech,_i,ca.l _moraad_m 33-669
!

1974008732-084



0 I I I I I J

0 20 40 60 80 90

82. DEGREE
p

Figure 5. Relative Importance of 011r3 CoupUng
as Seen at Joint #I

JPL Technical Memorandum 33-669 77

Im

1974008732-085



.a

It is noted again that some of the upper part of r_ = _!. 3 and 50.8 cm curvesD

are unrealizable for the JPL RRP breadboard for the same reasons as explained

for Fig. 4. The qualitative differences between R 2 and tt 1 are clearly seen

by compa:-mg Figs. 5 and 4.

R 3 is shov-n in Fig. 6 as a function of 02 for r 3 = lil. 8, 81. 3, 50.8 cm. For

the upper part of the r 3 ; 81.3, 50.8 cm curves in Fig. 6 the remarks are the

same as for Fig. 4. R 3 measures the relative importance of 01 as seen at

joint ,_2, while R 1 measures the relative importance of 02 as seen at joint #1.

Therefore, it is worthy to note both the quantitative and qualitative differences

between R 3 and R 1 by comparing Figs. 6 and 4. The bignificance of R 3 is againJ
, best seen in the equation:

?

_ D12 + D22 = D22 (R 3 + (114)

; i

i " i due to the acceleration at joint #1 is 11_]0of the inertial torque at joint #2,

z which is substantially less than the 50% generated by the acceleration at!

, joint #2 and felt at joint #1. For 02 = [60,90] deg, however, R 1 and R 3$ -' i

i_" : " i become nearly equal. It should be noted that the dynamic significance of R 1 ,' : _ and R 3 in the respective total torque equations is widely different since no !

I " !''' gravity torque acts at joint #1. while at joint # 2 the gravity torque has a t, dominant effect, In many instances the gravity torque felt at joint #2 is

::}:_i::i several orders of magnitude greater than any acceleration torque felt at ,I

joint 02. Therefore, to evaluate the relative dynamic significance of the i

different acceleration torques with full meaning, the tota_.__lltorque equations
should be considered.

The ratio 114 has dimension "cm" since it is related to the sum of the two ;)::
torques

* e + * r3 3 '"D13 1 D33 = D 31R401 + r3) 1115)
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The variation ofR 4 is flepicted on i::a. 7. R 4 is independent of r3, and varies

as a sine wave scaled to a maximum amplitude of 16. 19 cm. it is seen

= 01 = the dynamicthat for _"3 IZ. 8 cm/sec 2, = 0.5 rad/sec 2 and R 4 R4, max

of R 4 0i is about two-thirds of the dynamic significance ofsignificance

This effect should be compared to the inverse effect expressed by R2_: 3

81 in Eq. (113). See also example following gq. (113). It is notedversus

that the gravity force has a dominant effect at joint #3 as a function of 8Z.

Thus, the full significance of R 4 cannot be evaluated without considering the

total force equation for joint #3. In fact, it can be expected that the gravity

force feltat joint #3 will overshadow any acceleration force component by

several orders of magnit_Ide in most of the time.

Figures 4 through 7 can be combined into an integrated dynamic scheme for

the torque/force equations in a straightforward n_anner according to the

following equations, which are equivalent te Eqs. (I01 through (I03):

" D 1 R I R 2 (116)I(°I+ °z + _3)+ .....= T_

" '_ (0Z R301) T Z (I 7)._ :. D22 + + ........... = 1% .

.... "'=" * '" R401) F 3 (1181_: D33(r 3 + + ........... =

t •

_::_ i In these equations, R1, R 2, R3, R 4 should be considered with the proper

"_:_! _t signs (and no._._.tin absolute values!) according to the definitions given by

Eqs. (104) through (107). The combined effect of the summation in the

parentheses in Eqs. 1116) through (llg) can be zero as well as greater or less

than any of the components in the parentheses.

In summary, it is noted that all four ratios (RI, R2, R3, R4)attain maximum

value at O2 = 0 or 90 deg. Further, RI, max and 1),3, max te._uire that, in addi-

tion to OZ= 0 deg, we allohave r 3 = r3, max ffi 111.8 cm simultaneously. Both con-

ditions are quite extre me from the view point of normal tasks expected for the JPL ,.

RRI n manipulator. When _uch conditions may occur, two other things will al_o

J

g
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happen simultaneously: (a) the related acceleration values are (or can be

made) sufficiently low; or (b) the effect of the acceleration-related reaction

torques/forces is significantly overshadowed by other dynamic effects (gravity

torque or force). Hence, it is expected that acceleration-related reaction

torques or forces will be quite ipsignificant under normal operating conditions.

D. Simplification of Torque/Force Equations

One of the main advantages gained by the development of the explicit state

equations for the dynamics of the JPL RRP manipulator is that the relative

significance of the different torques/forces as well as the relative importance

of the different state components contributing to a torque or force term can be

explicitly evaluated for varying tasks and operating conditions. In this memo,

explicit state equations have been presented for total link inertias and gravity

i loads for all six link-joint pairs of the JPL RRP manipulator. Thus, we can

i evaluate the relative significance of the different state components contributing
. to the inertial and gravity terms at the joints, as well as assess the relative

i"
importance of the inertial and gravity loads acting at the joints as a function

of the state of the manipulator. A full evaluation of al___ldynamic terms will be

._, _ provided in a subsequent memo after the development of the state equations

for the acceleration- and velocity-related reaction torques/forces.

..... 1. Inertial Terms

i'_' The state equations derived for the Dii dynamic coeffic_.ents in Section VI. B

are transformation equations which transform the mo.nents of inertia of the

links ahead of link "i" (i + 1, i + Z, • • • , n), computed in the respective link

coordinates, to the rotation axis of joint "i. ,, Examining the different com-

ponents which contribute to variations in total inertias as a function of the joint

position vector, it is seen that some components are insignificant and can be

neglected without introducing sensible error_. In the subsequent simplifica-

tions, the state equations for Dii should be viewed together with the exact numer-

ical data presented in Section VII. B where the maximum and minimum values of

total inertias as seen at the six joint axes have been determined.
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a. Joint #1: Simplified State Equation for D if"

2
Since m2k2211 and m2k23 3 are nearly of equal magnitude, we have

2 is2O2 �2= cm2k21 m2k233c2O2 a(s2O2 + 2O2) = a

where "a" is the mean value of the two moments of inertia. It is a constant,

and can be added to the constant components of D 11"

The following moments of inertia can be set equal to zero due to their :mall

value relative to other components in the state equation for D.I:

i m3k_3 3

! I z!

_ m4k411

m4k422
!

2
m4k433

m5k511

2
m5k522

2
mBk533

2
m6k611

2
m6k622

2
m6k633
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Pll these simplifications reduce the state equation for D to less than one-third11
of its complete (and extremely complex and lengthy) form given by Eq. (58).

The error :ntroduced by these simplifications will be very small: less than

,). 590 for Dll,max , and less than 290 for Dll,max"

_nti'oducing the simplifications defined above, and I_erforming the possible

algebraic reduction_ of the remaining terms in Eq. (58), the state equation of

D11 take_ the f,)liowing simplified form:

= / s2 02Dll b I i b2 h3r 3 + b4r_)

_ [bss2%-,35 +b_s(Z%)s%s%+bTs(2%)c%+%s12%)s%]

+ b 9 r c204s205 + s202c205 + c202s204s205 + s(202)so4s05co 5 1: I.

_ * b10c64s85 +bllS04 +hi2 (119)

where bl, ...., b12 are constants given by

2
, b I = Constant components of D 11 (see page 48) I.319 kg.m

( )½ ,. 2__.. + m2k211 + m2k233 0. 104 kg.m 2

2
Total: 1.4,23 kg • m

No load in With load in the hand
the hand {Load as specified)

b z = m3k3gz2 2.51 Z. 51 l,.g.rnz

b 3 = 2(rn3_3 . m4Y"4) -5.49 -5.49 kg.m

b4 = rn3 +m 4+ _+m 6 6.48 8.27 ks

84 ffpt. TechnictJ, Memorand,_m 33-669
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No load in With load in the hand

the hand {Load as specified)

b 5 = 2m5z 5 + 2m6(z 6 + r6) O.232 O. 396 kg.m

b6 = m6(r 6 + z 6) O.08 O.523 kg.m

b 7 = m4_ 4 -0.006 -0.006 kg.m

b8 = m5_ 5 O.036 O.036 kg.m

Z

b 9 = m6r6(r6 + 2z--6) O.008 O. 118 kg.m ,
3

, 2_

blo = Zrzlm5z 5 + m6z 6 + m6r 6) O.038 O. 181 kg.rn

2

•_. i bll = 2mAz_r-,1 2 -0.002 -0.002 kg. rn
J'i

= m6rZ-,. 0. 013 N. 059 kg. m 2i blZ
I

In view of the numerical value of the constants b l, ...,blz, Eq. (119) can

be further simplified without introducing sensible errors. The most significant

part of Eq. (119) is the first lir.e which contains bl, b2, b3, and b 4. With n_.o_o

load in the hand, these components yield for r 3 = III. g cm and 0z = 0 and 90 deg.

Z

Dll,min = 1.423 kg.m

Dll,max - 5.89kg. m z " ',

Comparing these values to those given by Eqs. (71) and (69), it is seen that _'_ ,L
the error is 4%. With load in the hand, however, the esme components yield [_', x_/

Dll,max ffi 8. 15 kg.m 2

which has an error about 15% when compared to the corresponding exact value

given b.v Eq. (70). This error can be reduced to 10'I. if the b 5 term is retained
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in Eq. (119). Retaining the b 5term in Eq. (119) will also reduce the error in

D11, max with no load in the hand from 4°70to 1%. The b 5 term will also account

for the major part of the variations in D 11 due to changes in 05 . Hence, a very

simple and sensible state filnction which approximates the value of Dll with
good accuracy is the following expression:

DI1 = b 1 + [b2 +(b3 +b. c05)r3+b4r_]s2'O2_ (120)

' i where the values of parameters b4 and b 5 also depend on the load held in the

hand according to the simple formulas specified above for b 4 and b 5. Compar-
i _ ing Eq. (120) to Eq. (58), it is easily seen that the computational complexity of

!: _ Dll will be reduced nearly by 98% when Eq. (58) is replaced by Eq. (120). Thet

i content and strength of Eq. (120) becomes apparent after physical reasoning.
i

• b. Joint No. 2: Simplified State Equation for D22.
I

In the state function for D22 given by Eq. (60) the fol-lowing moments of inertia can be neglected due to their small relative value:

2
m4k411 t

2
m4k43 3

rusk52.11

msksZz2

2
rusk53 3

m_ k_ I I ,4

m6k_22

m6k_33
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4"

Introducing these simplifications, Eq. (60) can be written in the following

reduced form:

2 + (b3 + b5c@B)r3D22 = b13 + b4r 3

2 s205 20 )7 + b 9 s 04 + c 5 (121)

where

/

. _ b13 = constant components of D22 (see page 52)

= 4.72 kg.m 2

i _ b3, b4, b5, b 9 are constants, identical to those defined and computed
, for D II previously. (See pages 84 and 85. ) i

Equation (121) yields the following extremum values for D22:

z 2
i D22, max (no load in the hand) = 7.09 kg.m

2

D22, max (with load in the hand) = 9.64 kg.m

2
D22, mi,_ (no load in the hand) _ _9 kg. m

Comparing these values t. the correspondin_ .-._ct v- :...s given by Eqs. (74),

(75), (76). it is seen that the error introduced b,. :h,, _'_:;plifieatlons is between

Z¢/. and 6'/0. Equation (121) can be further simpl K'iec. 'T omitting the b 9 term,

and the total maximum error introduced into DZZ :.._tl still be less than 8%.

Hence. a very simple and sensible state function which approximates the value

of D22 with good accuracy is:

D22 = b13 + (b 3 + b 5 cOs)r 3 + b4r32 (122)

where the values of parameters b 4 _nd b 5 also depend on the load he. ,n the
hand according to the simple formulas defined on pages 84 and 85 for DII. It f,_

JPl, Technical Memorandum 35-669 81

i

1974008732-095



worthy to note that the b3, b 5,b 4terms in Eqs. (122_ and (120) are identical,

except that they are not multiplied by s2e 2 in Eq. (1 Z2). Comparing Eq. (122)

to Eq. (60), it is seen that the computational complexity of D22 is r_.duced

nearly by 90% when Eq. (60) is replaced by Eq. (122). The content and strength

of Eq. (122) is apparent by physical reasoning.

c. The Wrist Joints.

As discussed in Subsection VII. B-4, the state function

of D44 given by Eq. (64) is being reduced without simplifications to the follow-

ins form due to the equality m6k_l I = rn6k_22:
!

. s205 + c285 (123)D44 = b14 + b15 b16

i where
!

b14 = constant components of D44 (see page 571

i = 0. 107 kg.rn 2

i and the other constants are given by:

I No load in With load in the hand

the hand (Load specified)

t
b ffi 2 _ + b 9 0. 015 0. 127 kg. rn2mskSll + m6k I I

-i
hi6 = mjkj$3 + m6k 33 0. 001 0.002 kg.m 2

Neglecting the b16 term in Eq. 11231 will introduce only I%-- 6% error. Hence,

we have the following simple state hmction which appro_mates the value of

D44 with good accuracy.

[ bl._ s2' '$" "
D44 ffi b14 + 1124)

where the value of p,,rameter bl$ ah_c depends on the load in the hand accord- ! _:_'

Ing to the simple expression specified above. A_'_ n, the content of F,q. 1124) !;_
is apparent by simple physlea_ reasoning. _
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As shown in Subsection VII.B-5, the value of D55 and D66 is constant:

The parameters in Eqs. (125) and (126) are separated into two parts: b17 and

b19 are true constants, while the value of bl8 and b20 depends on the load held
in the hand :cording to the following expressions:

No load in With load in the hand

_ the hand {Load specified)

r 2b18 = rn6k II +b9 0.013 0.125 kg.m
i

3 z
: b20 = rn6k633 0.0004 0.002 kg.rn

While the true constants are:

2
b17 = 0.099 kg.m

2
b19 = 0.02 kg.rn

No specific simplifications are needed for D33 given by Eq. (6_) since

D33 is a co..Jtant; its value can only be changed by the mass of the load held
in the hand.

The functional form of the simplified state equations for the DII, D22,

D44 coefficients is noteworthy.

DII = f(02.r 3,0 5 ,b l,b 2.b$,b_,b L)

Ir L L 3)
D22 -- f 3, es, b3, b4,b5,b I _
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where superscript "L" indicates that the respective "b" parameters also I

depend on the load held in the hand.
!

Z. Gravity Terms t
The complete state equations for the gravity terms developed I

and presented in Section VI.A are not too complex functions. The functions "

for D 2 and D4 given by Eqs. (48) and (52) can be slightly simplified if needed t

t

: for a price of small errors.
I

i The state function for D 2 can be organized in the following form: _

¢,

D 2 = g(d I + dzr3)se 2 + gd3{s02c05 + c02s04s05)

J
i I + gd4c0Zc04 (lZ71

where g = 9.81 m/sec 2 (acceleration of gravity), and the constant parameters

dl, .... , d 4 are given by

:-_ _,.... . No load in With load in the hand
• _,,. the hand (Load specified)

2z m3_ 3 --¥ '; d 1 - m 2+ -m4Y 4 -2.788 -2.788 kg.m

d z = m 3 +m 4 +m 5 + m 6 6.47 kg 8.28 kg

d 3 = m5z 5 + m6(z 6 + r 6) O. 116 O. 566 kg.m

d 4 = m4z--4 -0.006 -0. 006 kg. m

As seen, the d 2 and d 3 parameters depend on the load held in the hand.

Equation (127) is exact. It is seen, however, that the contribution of the

d 4 ter_:_ to the value of D Z is insignificant, less than l°]o. Thus, we can use the

following simplified equation which reproduces the value of D 2 with very good
accuracy:

i i ii i| i ii ,

I D2 -- gld I + dzr3)s0 z + gd3(s0Zc0 § + c02s04s05) (I_8)
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It is noted that the potential importance of the d 3 term increases as r 3

and/or 02 decreases.

The exact state function for D 4 can be expressed as

D4 = gd3s02c04s05 -gd4s02s04 (129)

where the parameters d 3 and d 4 are identical to those defined and computed for iJ

;' D 2 above. The relative significance of the d 4 term in Eq. (129) can be expected
J_

_ as small in most of the time. Hence, we can use the following reduced state

_ function as a good approximation for D4: c

D 4 = gd3s02c04s05 (130)• :

However, _he form of Eq. (129) is simple. Therefore, not much is gained by _

i '_ omitting the d 4 term from Eq. (129) if the maximum 0. 056 N.m value of the d4 !
term (as referred to the output) seems important. ,

i
!

i ._,, It is noted finally that the state functions for D 3 and D 5 given by Eqs. (50)
and 154), respectively, can be written as:

I D3 = -gd2ce2 I (131)

D5 = gd3(s02s04c05 _ c02s05) I (132) "

where the parameters d 2 and d 3 are identical to those defined and computed for D2

previous ly,

The simplified state equations developed for the inertial and gravity terms

of the JPL RRP manipulator together with the related parameters are summar- ,_,_/_

ized in Tables 3 and 4. _:'_

E. Relative Importapce of Gravity Terms Versus Inertial Terms ": _ " ri i ii • _.-7' _

The simplified state equations for the gravity and inertial terms allow an :_.

easy functional evaluation of the relative importance of gravity versus inertial

terms in the torque/force equations. We form the following four ratios:

D2

K I =_= _ (1,3)
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i

i*
Table 3. Simplified State Equations for Inertia and Gravity !

Loads at the Six Joints [

Inertia Terms:

L Z sZOz

L L Z i

DZ2 = b13 +(b 3 + b5cO5)r3 + b4r 3

L

D33 ---b 4

D44 = b14 + blL5s205

L

: D55 = b17 + b18

L

D66 b19 + bz0._ -- i

.Gravity Terms: !

.,:. --...-___ D 3 = . gd 2c02

D 4 = gd 3 sO2c04s04

D5 = gd_ (s02s04c05+ c02s05)

L'. depends on the load in the hand
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Table 4. Parameters in the Simplified State Equations for !

Inertia and Gravity Loads i
t

bl 1.423 kg.m z
(ZOl.5 oz-in-sec z)

b2 Z. 51 kg" m 2
(355.5 oz-in-sec 2)

b3 -5.49 kg.m
(-19.75 oz-sec 2)

b4L = m 3 +m 4 +m 5 +m 6 6.48 kg:_
(0.592 (oz-secZ)/in)

, bL - 2m5; 5 + Zm6(_ 6 + r6) O.23Z ks.m_
• : (0.834 oz-sec 2)

bl 3 4.72 ks.m 2

i _ (668 oz-in- sec z)
: !

, O. 107 kg.mZ
i b14

i _ (15.17 oz-in-sec z) '

"i Z! b_5 = mskZll +m6k611 +m6r6(r 6 +Z;6) 0.015 kg.mZ',,
(Z.19 oz-in-sec 2)

b17 O. 099 kg.m z
(14. Ol oz-in-sec2)

J

blL8 = m6k_11 +m6r6(r 6 + 2_6) 0.013 kg.m2*
(I.81 oz-in-se¢ z)

O.02 kg. m z
b19 (2.81 oz-in-sec 2)

bf0 2 O.0004 kg.m2_

: mbk633 (0.05 oz-in-secZ) _(_

d I -Z.788 kg. m _(
(-10.03 oz-se¢ 2) r,_']_.'

d = b andd ffi O. OSb ......::_

LI depends on the load h, the hand

*t quoted number is referred to "no load" in the hand
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D3 Eq. 131)
K 2 - - (134)

D33 Eq. (62)

D4 Eq. (130)

K3 = --D44= Eq. (124) I135)

D5 Eq. (132)
K 4 = _ = (1361DS5 Eq. (125)

For 04 = 0 5 = 0 deg, we have the following expression for K 1 according

to the definition given by Eq. (133):

i _ g(d + d 3 +d2r3) ]

i KI = I Irad/sec 2Jb13 + (b3+b5)r3 + b4r2 sO2 (137)

I , 3 :

As seen from Eq. (137), the relativeimportance of gravity torque versus

v inertiatorque at jointNo. 2 varies essentiallyas a -'.inewave of 02 with an

• - ,,. amplitude dependent on r3. The absolute value of K 1 given by Eq. (137) is

:_'_i,_.._. shown in Fig. 8 for three r3 values. The '%" and "d" parameters which appear

i,_ ,: in Eq. (137) and depend on the load i_, che hand are taken for the specified

,....._._,_ load. The function K 1 is normalized to I rad/sec 2 angular acceleration at

joint No. 2, For instance, if 02 = 0.5 rad/sec 2, the gravity torque at joint

No. 2 for 62 = 60deg and r 3 = 96.5 cm is 14 times the value of the inertia
torque. Or, for the same conditions, the gravity torque is only 3.5 times the

value of the inertia torque if 02 = 2 rad/sec 2.

The ratio K2 defined by Eq. (134) simply gives (without any condition on
any state variable):

K2 = go02 [cm 1 ]/see 2 (138)

Thus, the relative importance cf gravity force versus inertia force at

joint No. 3 varies exactly as the costae of 02 with a maximum
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t

amplitude = g = acceleration of gravity. The absolute value of K 2 is shown

in Fig. 9. It is noted that K 2 is independent _f any inertial or geometric

parameter. The ratio K 2 on Fig. 9 is normalized to 1 cm/sec 2 linear acceler-

ation at joint No. 3.

For O4 = 0 deg, the ratio K 3 defined by Eq. (135_ gives the follow_.ng

expre s sion: :

gd3s 05 r 1 ]
' K3 = se2 2 11391

b14 + blsS2e 5 Lrad/sec

Thus, the relative value of gravity torque versus inertia torque acting at joint

! No. 4 varies essentially as a sine wave of e 2 with an amplitude dependent on e 5.

| The absolute value of K3 given by Eq. (1391 is shown in Fig. 10 for two 05
i

i values. Again, the '%" and "d" parameters, which appear in Eq. (139} and
•, depend on the load in the hand, are taken for the specified load. The ratio K 3P 2

is normalized to I rad/sec angular acceleration at joint No. 4. It is interest-

' ing to note that the relative importance of gravity torque versus inertia torque

. can be more predominant at joint No, 4 than at joint No. 2 as seen by comparing

Figs. 8 and 10.

For e 5 = 90 deg, the ratio K4 defined by Eq. 1136) gives the following
expre s sion:

i •

! :

= 'bl 7 + bl 8 ad/sec 2 (140) _'

Thus, the relative value of gravity torque versus inertia torque varies exactly I_' _

as the cosine of e 2 for e 5 : 90 deg. But, as seen from Eq. (132), K4 will vary I_ _ ;:

as the sine ofe 2ire 5 = 0degand e4 = 90deg. Or, ire2 = 0deg, thenK 4 1_, :_

varies as the sine of e 5. However, the maximum amplitude of any wave vatS- ; _ ;_:_

atlon in K 4 is fixed, independent of any state variable. Figure I I shows the : :"./"-/_-

absolute value of K4 as given by Eq. 11401, normalised to I rad/sec 2 angular :._:_
acceleration at joint No. S. As seen from Figs. 8 and I I, the relative Stupor- ;o _ _,;_:

tahoe of gravity torque versus inertia torque at joints No. 2 and No. 5 can be _,/296 SPl_ Technical Memorandum 33-669
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nearly equal, t Again, the values of parameters d B and b18 ir _'_. (140) are

taken for the specified load held in the hand.

As a main conclusion, it is seen that the gravity terms at joints No. 2,

B, 4, and 5 have a relatively high significance versus the corresponding inertia

terms. However, the overall significance of the gravity terms in the torque/

force equations can only be evaluated when all relevant reaction torques/forces

are also considered in the equations.

The four ratios given by Eqs. (137)through (140) and displayed in Figs. (8)

through (ll)are linear functions of the fieldof gravity "g." For "g" values

' smaller than the "g" on Earth (forinstance on the Moon or Mars), the relative

importance of gravity terms versus inertiaterms at jointNo. 's 2, 3, 4, and

, 5 of the SPL RRP manipulator would correspondingly decrease.

!

ii ii

tSince K 1, K2: T.C3, K4 are defined in terms of the corresponding simplified state
fuactions whi_a carry some error, the ratios displayed in FiBs. 8 through 11
will also carry some error, ha the avaraSe, however, the error in the ratios
can be tuques*ted less than 8 - 10%.
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APPENDIX A

COMPLETE SET OF PARTIAL DERIVATIVE MATRICES U;i
, IN FUNCTIONALLY EXPLICIT FORM

FOR THE YPL RRP MANIPULATOR

The partial derivative matrix functions U.. are essential "building blocks" in the]1
general algnrithm applied in this memo for the dynaraic model of a maniptllatnr.

To delive the explicit functional relations for the D., Dij, and D.. coefficients. 1 MP

• in the dynamic equations for the JPL RRP manipulator, the Uji matrices must

_- first be determined in a functionally explicit form for this particular

b manipulator.

i. The general function definition for the Uji n: 'ices is given in Section ILl in the
main text. For easy reference, the functional meaning of the t,xo running matrix

indices in the U.. notation is repeated here: the first index (j) always refers to

the highest index number in the concatenated link transformation matrix, while ::

the seco__._ndindex (i) always refers to the index number of the joint variable with
respect to which the partial derivative is taken in the concatenated link trans- _,

formation matrix. Consequently, Uii _ 0 only for i -_j; otherwise for i > jJ

Uji _- 0.

As seer from the definition, the U.. matrices are functions of the manipulator
j1

joint variables and link displacement constants. In general, for a system of n

joint variables a particular Uji matrix becomes a function of all joint variables
and link displacement constants starting from index I and going up to (and

including) index j, but will be independent of the joint variables and link dis-

placement constants which have index number greater than j. It is noted that

the dimensionality of the Vii matrices is 4 by 4.

In this Appendix all Uji matrix functions which are pertinent to the $PL RRP
manipulator are compiled in an exp_nded and functionally explicit form. Deal-

ing with a six degrees-of-freedom manipulator (i, j = I, ..., 6), and keeping in

, mind that Uji _ 0 only ior i s j, we will have Zl Uji matrix functions different

from sets. The individual functional definitions for all 71 U;i$ _ 0 matrices are

listed in Table A. 1. The six individual link traudo_matiou matriceb T_. 1

(i = 1, . .., 6), upon which the explicit expansion of the 21 Uji _ 0 matrices of the
SPL KRP manipulator is based, have bnn given previously in Table 2 of ROf. 1.
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The subsequent 7-1 functionally explicit expressions for the U.. matrices for this
j1

rnrnipulator are not available elsewhere in the literature.

The parar::eter and variable definitions and notations used in this Appendix are

identical to those specified in Tables 1 and _ of Ref. 1. In particular, it is

noted that we use the following short notations

s.1 - sin 8 i
f

ClC 2 -e I ClS 2 -rzs l

U21 = (A. Z)

0 0 0 0

0 0 0 0

|
"c I -sic 2 -sla 2 -(r3slS2 + r2cl)'

s I tic 2 ClS 2 (r3cll 2 - r2s 1)

= (A.3)
0 0 0 0

0 0 0 0

; JpL Technical Memorandum 33-669 A-3

M _

1974008732-112



"(ClC 4 - SlC2S 4) sis 2 -(cls 4 + slCzC 4) -(r3sls 2 + r2c 1)

(SlC 4 + ClCzS 4) "ClS Z -(sis 4 - clczc 4) (r3cts 2 - rzSl)

U41 = (A. 4)
0 0 0 9

0 0 0 0

'(CLC4C5 -(ClS4 (CLC4S5 -(r 3slsZ]

- slCzS4C 5 + SLC2C4 ) - SlC2S4S5 + rzCl) /: + slSzs 5) - slSzC 5)

i

!_ ( SlC4C 5 -( s I s4 ( s 1c4s5 ( r3c I sZ
I = (A. 5)

•_ _ US1 + ClCzS4C 5 - clCzC4) + ClCzS4S5 - rzsl)

; - ClSzS5) + CLS2C5)

- 0 0 0 0

0 0 0 0

¢

k
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'(CLC4C5C6 (-ClC4CsS 6 (ClC4S 5 _r6(clc4s5

- SlC2S4CsC 6 + SlCzS4C5S 6 - slCzS4S 5 - SlCzS4S5

+ SlS2S5C 6 - SlS2S5S 6 - SlSzC5) - slsZc 5)

- ClS4S 6 - cls4c 6 - (r3sls Z

, - SlCzC4S6 ) - SlCzC4C 6) + rzcl) I
/

_- (SLC4C5C6 (- slcdc5s6 (SlC4S5 tr6(slc4s5 :"
(A. 6)

U 6 = + c s4s 5 + ClCzS4S5_ 1 + ClCzS4CsC 6 - clczs4c5s6 lCz

- ClSzS5c 6 + ClSzS5s6 + ClSzC 5) + clSzc5

- SlS4S 6 - sls4c 6 + (r3clsz

+ clczc4s 6) + clcZc4c 6) - rzs 1)

0 0 0 0

0 0 0 0

-cIsz 0 ClC 2 O"

-SlS z 0 SlC z 0 (A. 7)
UZZ =

- c 2 0 - s2 0

0 0 0 0 Iii_

0 -cls 2 ClC z r3ClC2l

0 -slm z sic 2 r3slc 2
(A.8)

U32 =

0 -c z - mz -r3mz

0 0 0 0
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JL]I - I - "-- --;-- ] ---2 -':_._;_i ............ b

f

t,
t

d

t:

-ClSzS4 -clcZ "ClSzC4 r3clCz i-

-SlSZS4 -SlCz -SlSzC4 r3slcz i
CA.9) t

U42 =

-cZs 4 s Z -c2c4 "r3s2 i

0 0 0 0 t

-(ClS2S4c5 -cls2c 4 (-ClS2S4S5 r3clc 2

+ clczs5) + clczc5)

i "(SlS2S4c 5 -SlS2C4 ('SlS2S4s5 r3slC2

•" + SlCzSs) + SlCzC 5) (A. 10)
' _ U52 =

, _ ('c2s4c5 -cZc 4 -(cZs4s 5 -r3s Z
i

' ." '_ + sZs 5) + sZc 5)

i 0 0 0 0
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J

"-(ClS2S4C5C6 (clsZs4c5s6 (-clSzS4S 5 {r6(-ClSzS4S 5"

+ clcZs5c 6 + ClCzS5S 6 + ClCxC 5) + ClCzC 5)

+ ClSzC4S 6) - cls2c4c 6) + r3ClCzl

-(sl s2S4CsC 6 (sl s2s4c5s6 (-sls2s4s5 It6(- sl s2s4s 5

+ SlCzSsc 6 + SlC2SsS 6 + SlC2C 5) + SlC2C 5)

U6Z = + slSzc4S 6) - SlSzC4C 6) + r3slc21 (A. II)

(-CzS4C5C 6 (cZS4CsS6 "(CzS4S 5 - {r6(czs4s5
i

' _ + szs5c 6 - szs5s 6 + SzC5) + SzC5)

- cZc4s 6) - c2c4c 6) + r3sz}

!" o o o o
!

i "0 0 0 cls 2

0 0 0 s I s 2

U33 = (A. IZ)

0 0 0 c 2

0 0 0 0

"0 0 0 ClS 2"

0 0 0 sIs2

u43 = (A. is) , ?

0 0 0 c 2

o o o o ,- :_'
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j__ J.l

1

"(-SlS4C5C 6 (SlS4C5S6 (-SlS4S 5 r6(- SlS4S 5

+CLC2C4C5C 6 -clCzC4C5S 6 +ClCzC4S 5) +clCzC 4s 5)

- SlC4S6 - SLC4C6 I

- clCzS4S6 ) - ClC2S4C 6) !

_. (Cl s4c5c 6 (-Cl s4c5s 6 (ClS4S 5 r6(cls4s 5

:_,_, + slCzC4C5C 6 - SlCzC4C5S 6 + SlCzC4S5 ) + slCzC4S 5)
u64 = (A. t8)

: _,. + ClC4S 6 + ClC4C 6

- slczs4S6) - SlCzS4c 6)

i (-s2c4c5c6 (s2c4c5 _6 -szc4s5 -r6 SzC4S5

i + SzS4S6) + szs4c6)

i 0 0 0 0

I
-(SlC4S5 0 (SlC4C 5 O"

+ ClCzS4s 5 + ClCzS4c 5

+ c] sZc 5) - c lsZe 5)

(ClC4S 5 0 (-ClC4C 5 0

= " SlCzi4s5 + slczs4C5 (A. 19)
U55

- slszc 5) - stsZs 5)

(s 2s4s 5 0 -( s z s4c_ 0

- c2c 5) + czs 5)

0 0 0 0
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APPENDIX B

LINK MASS CENTER VECTORS AND PSEUDO INERTIA MATRICES FOR
THE JPL RRP MANIPULATOR

Using the notations introduced in Section I_ in the main text, and applying the

0 parameter values determined for the 3PL RRP manipulator elsewhere (see

footnote on p. 47), the six link mass center vectors and the six pseudo inertia

matrices are compiled in this appendix. The essential point in the subsequent

listing is to distinguish betwe _n zero and non-zero parameter values. The

actual numerical values for the non-zero inertial parameters are supplied at

_ the end of this Appendix.
P

Mass Center Vectors

0] o

_1 [ z4

: 1

i: . i

-":_"'" -Y2 0 [

I

I

.I l

m

o, [o_
I

!

o! Io t

%1
I I

.,J [,J
As seen, for _§ m_d _6 we use sero sin©e thet r numerical value Is very sell.
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Pseudo InertiaMatrices

Note. k 2 - k 2 , k 2 = k.2 k 2 = k.2 and the first index (i) refers to the
ill ixx i22 _yy' i33 Izz

index number of the link.

1974008732-121



_(2 z z) o o o-k311 +k32z+k333

,(_ _ _ ) o o0 -2 k311 " k322 33

33 = m 3

I Z 2 . k333' 0 0 _ k311 + k322

_ o o _3 1 _

x'k411 + k422 + k433.

o g(k41t

' J4 = m4

1
0 Y4 z4

1 2 o

1 2 o

35 = m5
I 2

0 0 "_5 I
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 l/.2 ) o o o

o _ k61 l

J"6 - m 6

12/ +k_z2 k2 ) "/6
0 0

"2_k611 - 633,

t

o o "/6 1!

Remarks on loads in the manipulator hand, and the inertial characteristics of
link #6:

, It is noted that the mass center vector P'6 and "pseudo inertia matrix" J6 as

i specified in this appendix are only related to the fixed, constant structure of
t link #6. (Link #6 includes also the hand.) If the manipulator hand keeps and

i moves a load, then the inertial properties of the load should be properly added

. ,, to the inertial properties of link #6. That is, the value of the _6 vc *or and J6

i _ matrix should be modified according to the inertial properties of the load
-'_ _: .._ Changes in torques (and force) due to a load kept and moved by the hand will be

'_i i "felt" (and .can also be computed) at the different joints through the appropriate
,'t modifications oi the value of the _6 vector and J6 matrix•

Clearly, when handling irregular (and, by definition, *'remote") objects with

mass comparable to the mass of link _6, only compensating estimates can be

made for changes in the inertial properties of link #6. Even when handling regu-

lar objects, the changes in the inertial properties of link/_6 can only be esti-

mated, since it is not known ahead of time how the grasping operation will

exactly succeed in emplacing the object relative to the hand coordinate frame,

or which is the same, relative to the coordinate frame of link _6.

The effect of handlin 8 loads (that is. the effect of modifications in the l_ertial

properties of link #6) on some of the manipulator dynamic, coefficients is shown

in the subsequent appendix.

B-4 XPL Techn/oal idamorandam33-669

1974008732-123



Numerical values of non-zero inertial components of the JPL RRP manipulator

determined elsewhere (see footnote on p. 47), and applied in tl.: _ report are as

follows :

m I = 9.29 kg = (0.849 (oz-sec2)in _

_I = 1.75 cm = (0.69 in)

_1 = -11.05 cm = (-4.35 in_

mlk_ = 2II 0.276 kg.m = (39.1 oz-in-sec 2)
t

i

2 2
_ mlkl22 = 0.255 kg.m = (36.15 oz-in-sec 2)

2 ? "
mlkl33 = 0.071 kg.n, = (10.03 oz-in-sec z)i

i i m2 = 5. 505 kg = (0. 513 (oz-sec2)/in)

_3 - -10.54 cm = (-4.15 in)

' _'2 = -0.79 cm = (-0.31 in) i
\

• k_ sec 2' .m 2 = (15.28 oz-in- ). ._. II : 0.108kg. m 2 _

.... m2 22 = 0.018k 8. = (2. 49 oz-in-aec Z}

mZ_33 = 0.1 ks.rn 2 = (14. 13 oz-in-sec 2)

m 3 • 4.25 kS = (0. 388 (oz-.ec2)/in)

_'3 • 064.47 crn = (-25.38 in)

2
m31L311 • Z.51 kS.m 2 - (355.5 os.in.sec 2)

m3_22 • Z. Sl kS.m z = (355. S os-in.sec z)

m3k_$ 3 • 0.006kS.xn z = (0. 854 os-in-sec 2)

JPL Technics/I_mor_uksm 3._-669 B-$
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f;

.~

(

rn 4 = 1.08 kg = (0.099 (oz-sec2)/in) i

Y4 = 0.92 cm = (0.364 in)

z 4 = -0.54 cm = (-0.212 in)

_" 24 2 2:t nx4k 11 = 0.002 kg.m = (0.253 oz-in-sec )

"_ _' ,2 2 2
;_ m4t¢422 = 0.001 kg.m = (0. 167 oz-in-sec )

m4k433 = 0.001 kg.m = (0.156 oz-in-sec 2)

: - rn 5 = 0.63 kg = (0.058 (oz-sec2)/in)

: _5 = 0.03 = 0 cm = (0.01 = 0 in)

_5 = 5.66 cm = 12.23 in)

- '_ 2 2

2 2 2 im5k522 = 0.003 kg.m - (0. 360 oz-in-sec )

2 2 2
rusk533 = O. 0004 kg.m = (0.057 oz-in-sec ) i

1
m 6 = 0.51 kg = 10.047 loz-sec2)/in)

_6 " 0.14 .. 0 cm = 10.057 = Oin)

= -9. ZZcm = 1-3.63in)

2
m6k611 -- 0.005 kg.m 2 = 10.667 oz-in-sec 2)

m6k222 = O. 005 kg.m 2 : (0.667 oz-in-sec 2) li

rn6k_33 = O. 0003 kg.rn 2 = (0. 049 oz-in-sec 2)
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The two geometric _arameters of the JPL KRP manipulator applied in

the calculations are:

r 2 = 16. Z cm (6. 375 in)

r6 = Z4.76 cm (9.75 in):o,,

:_: The input shaft inertias referred to the output are as follows:

"< Z

At joint No. 1: 0.953 kg.m (135 oz-in-sec 2)

, _ At joint No. Z: Z.193 kg.m 2 (310.6 oz-in-sec) 2

• ! At joint No. 3: 0.782 kg (0.07143 (oz-sec2)/in)*
; Z

At jointNo. 4: 0.106 kg.rn (15. oz-in-sec 2)

Z 2
• At jointNo. 5: 0.097 kg.m (13.7 oz-in-sec )
i
#
, Z 2
! : - At jointNo, 6: 0.0Z kg.m (Z.81 oz-in-sec )t ..

Derived metric conversion factors applied in this report are as follows:

Length: I in = 2.54 cm

Z
Mass: 1 (oz-sec)/in = I0. 945 kg

Z
Static moment: 1 oz-sec = 0. Z78 kg, rn

Moment of inertia: 1 oz-in-sec 2 = 0.00706 1_. _n2

Force: l oz = 0.278 N

Torque 1 oz-in -- 0.00706 N.rn

,,|

*Equivalent rnas s.
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APPENDIX C

MANIPULATOR DYNAMICS WITH LOAD IN THE HAND

Suppose that a load in the hand will cause an offset in the mass center of link #6

so that _6 _ 0 and _6 _ 0 together with _6 _ 0. That is, the effective form of

the mass center vector _6 becomes:

F_6"

Y6
P6 =

, z 6

; Of course, the effective form of the "pseudo inertia matrix" J6 becomes also

. modified through the non-zero values of _6 and "Y6:
i"
i

,(,. , ,) -_ "k611 + k6zz + k633 0 0 x

': 0 _ k611 " k_ 33

_: .... Jr. _- 3 6 = m 6

_6 -_6 "_6 l

To illustrate the effect of the non-zero values of _6 and _6 on the manipulator

dynamics, the necessary modifications for some of the dynamic coefficients are

evaluated in explicit form, and listed below.
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J__ J._l ...... .-" %5"- ..... =_ , -" L_I_ _ I I .11 II

1. Modifleations in the gravity terms caused by x 6 # 0, _6 # 0

a) For joint#2:

The following terms should be added to D z given by Eq. (_8)"

+gm 6 [_6(C8zS04C85c06 - sezse5ce 6 + cOzce4s@ 0)

+ _6(-COzSO4CO5SO 6 + SOzSO5S@ 6 + c02¢04c86) _ (C. I)

b) For joint #4:

The following terms should be added to D 4 given by Eq. (52}:

t' +gm6sez [ _6(ce4cesce6 " se4s%)
i

I" - _6(c84c05s86 + s04c06)] (C.2) !

i
t i
' " c) For joint #5:
i .*' k*

+gin6 [_6eo6(-'OZSe4s05 * COzcO5)

+ _'6,e6(sozso4so 5 - eozeo5) ] (C. 3)

d) For joint #6:

If _6 and/or _6 are different from zero, then D 6 will also be different
from zero. Instead of Eq. (56),we will have now:

D 6 -- -gin6 [_6(s0zs04c05s06 + c0?sOss06 - S0zC04cO6)

+ _6(,ezse4cesce6+ cezsesce6 + se2ce4s86)] (C.4)

It is noted that _6 # 0 and _6 # 0 cannot have any effect on D 1 and D 3.
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2. Modifications in the acceleration-related uncoupled terms caused
by _6 _ 0, _6 _ 0

The D66 and DSS dynamic coefficients given by Eqs. (68)and (66), respectively,

will remain unaffected by _6 # 0 and/or _6 _ 0. Furthermore, _6 # _ and/or

y% # 0 canr, ct have any effect on D33. Only D44, D22, and D 11 will be modi-

. lied due to _6 _ 0 and/or _6 # O.

+ a) Modification for D44:

: The following term should be added to D44 given by Eq. (64):

_: +2m6r6sO5cOs(_6cO 6 - _6s06) (C. 5)

' b) Modifications for D22 and Dll:

i _ The following terms should be added to D22 given by Eq. (60):

_,_' +_6 sOSsO6lr6cO5 + r3) - r6sO4seslsO4cOss06 " c04c06) 1C.6) .-

The following terms should be added to DII given by Eq. 158):

+Zm6_ 6 IIr6(cg2se4se5+SgzCes)-r3sO z](ceZsg4cg5cg6-sezsgSce 6+eezcg4sg 6,

+ (.-6ce4se5 - r2)(ce4ce5ce6 - se4se6)1
l

(c. 7)

+2m6_ 6 I[r6(cezSe4se5 + se2Ces) + r3se2] (se2sesse6 + ¢e2ce4ce6 - cezse4cgsse6 )

(r z - r6ce4se s) (ce4cesce 6 + .e4ce6) I
+

It is noted that the number values of the 611 k 2Z' and k 33 radius of gyration
terms will also be changed in the "pseudo inertia matrix" when there is a load in

the hand. Of course, this change wUl not produce additional terms in the state

functions for the Dii dynamic coefficient,_; it will only change the constant

SPL Technical Memorandum 33-669 C - 3
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2 2 2
number values of the k611, k6z z, and k633 parameters whenever they appear

in the state functions for the D.. dynamic coefficients, Eqs. (58), 160}, 164},I1

(66), (681. t)

t) It il assumed here that the cross products in the "pseudo inertls nlatrix" -:;;

J6 will remain sero. If this is an unsatisfactory approximation, tllen addi- _f_f._
tional terms will appear in the state functions for the Dii dynamical _z

coefficients. ,_!.
G-4 SP]., Technical Memorandum 33-669 ,
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APPENDIX D

SIMPLIFICATION OF THE GENERAL MATRIX ALGORITHM FOR
MANIPULATOR DYNAMICS

The general algorithm for manipulator dynamics applied in Refs. 5 through 8,

and employed also in our analysis, is given by Eq. (1) in the main text of this

report. According to Eq. (1), the dynamic coefficients Dii and Diik in theJ J

general equations of manipulator motion are expressed in terms of the Trace

of the products of 4 by 4 matrices. Essential "building blocks" of the matrix

products are the first and second partial derivative matrices Uii and Uiik

defined by Eqs. (4) and (7) in the main text. The purpose of this Appendix is

to show that the application of the Uij and Uijk matrices in the complete form

as defined by Eqs. (4) and (7) is unnecessary in the computation of the

i acceleration- and velocity-related dynamic coefficients Dij and Dij k.s

'. Statement:

1 T 2
All link coordinate transformation matrices TO, I' "'" which

i have upper index number smaller than the smallest upper index

iinumber (say "i") of a derivative matrix QT .I can be omitted

from the Trace of matrix products corresponding to the defini-

tions of the Dij and Dijk dynamic coefficients _,ivenby the matrix
algorithm of Eq. 11).

!

For instance, according to the Statement, the D55 inertial term and the D4, 56

Coriolis term can be computed using '.hefollowing simplified formula:

= 1 2 3 4 1 2 3 4 _)T]D55 Tr [ToTIT2T3 QT4515 (ToTIT2T3 QT4

omit ! omit !

1234 56 1234
+ Tr oTITzT3QT4TsJ6 (ToTITzT 3 QT5T6)T

omit ! omit !

JPL 1'ethnical Memortmdum 33-669 D-I

i i I

1974008732-131



1 2 3 4 5 6 1 2 3 T|

7

T3QT4QT5 _ (ToTIT 2 4 5 b= QT3T4Ts)D4,56 Tr ToTIT 2 J
omit! omit!

As seen in the two examples quoted above, the introduced simplification reduces

the computational complexity substantially. In the case olD55, the original

formula calls for the evaluation of the Trace of the product of 13 and 15

matrices, while the introduced simplified formula calls for the evaluation of the

Trace of the product of 5 and 7 matrices only. In the case of D4,56, the
original formula requires the computation of tbe Trace of the product of

16 matrices, g, hile the proposed simplified fermula requires the computation

of the Trace of the product of 10 matrices only. (It is recalled that all matrices

are 4 by 4 matrices. )
i

! The validity of the introduced simplification of the algorithmic formulas for the¢

Dij and Dij k dynamic coefficients for .any manipulator can be shown oy general
matrix manipulations elaborated briefly below. The essence of the proof is

to show that the effect of the link coordinate transformation matrices omitted

from the Trace of matrix products is equivalent to the effect of the identity

matrix in the chain-product of r._atrices. To make the proof concise, two

lemmas will be stated which are related to the properties of the general 4 by 4

link coordinate transformation matrix T!
I-I:

i rcei -ca. so. sa. sO. a.ce.

d

1 1 1 1 1 1

sO. ca.c0. -sa.c0. a.sO.
T i 1 1 1 1 1 1 1

i-I :_ (D. 1)
0 sa. ca. r.

1 1 1

0 0 0 1

Lemma I : The general structure of the product

k-1 '** i-I T-1 '*" Tk-I

for any "i" and "k" is as follows:
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___ _,, ....... _;_+ _.-:t._jil: +_ + i, -U I _ i .

¢

i
!

1

I ik
1 0 0 ,R14

I _ik [r_ '

Ri k 0 1 0 I / IT1 , r12
= t I_24 - - - (D. 2)ik = - - -',-

0 0 I f

.......... '- - - - i t

R34 Lrl2 _ r22ik ik ik t ik
I

R14 R24 R34 I R44

i

T
;_+ where the rll submatrix is always the 3 by 3 identity matrix and r21 = r12.
_ (That is, R ik is a symmetric 4 by 4 matrix.) Lemma 1 can be proved by

_* direct multiplication and induction.

Lemma 2: The general structure of the product

+ i-

i Bik _ T! • k"- I-1 "" Tk-I

i. for any "i" and "k" is as follows:

! -
ik ik ik ' ik

! Bll B12 B13 I B14
I

ik ik _ik ' ik I i blz 1

Bi k B21 B22 t_23 ' B24 bll_- ', -- ...... (D.3)

ik ik ik ', ik
B31 B32 B33 ' B34 0 1 1 J

I

0 0 0 ' 1

that is, the b21 submatrix is always zero, and b22 is always equal to I.

Lemma 2 can be proved by direct multiplication and induction.

Let the followin$ partitioning be introduced for a symmetric matrix P, a

skew-symmetric matrix Q, and an elementary matrix _..

JPL Technical Momorand_m 33-669 D-3

Jl

1974008732-133



Pll P12 P13 P14

I i P__ ' PlZ

PIZ PZZ PZ3 ',PZ4 I_ ,
P - J = _ _. (D.4)

P13 PZ3 P33 I P34 LPlz : PZZ

I

P14 PZ4 P34 i P44

T
where Pll is a symmetric 3 by 3 submatrix, Pll = Pll' Further,

(

m

° 00 -1 0 ,

Li , i 0
I 0 0 , 0 qll ,

, Q = , = - - -I- - - (D.5)

i 0 0 0 ' 0 '
....... _. 0 I 0

; !

I 0 0 0 , 0
I

i

i 2 where qll is a skew-symmetric 3 by 3 submatrix, qT lit is
11 = " qll"

""' ;_ obvious that QT = . Q. ) Further,

":'; ";* 0 0 0 ' 0

"; 0 0 0 , 0 t
_" = , = - I- (D. 6)

I l I
0 0 0 , I

;;o[o t

where _12 is an elementary 3 by I submatrix. It is noted that the Q and _" are ithe differential operator matrices related to rotary and linear joints, respec-

tively, while the symmetric P matrix i8 simply identical to the symmetric I!

pseudo inertia matrix $k (see Eq. (I0)), or it i8 constructed as P = BikSklBik)T _'_

where B ik is given by Eq. (D. 3). iJ

The following rules related to the Trace operator are recalled: l

TriO) = TrlC) T (D. 71
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4r

for a square matrix C, and

Tr(ABC) = Tr(BCA) = Tr(CAB) (D.8)

ifA is of order (m X k), B of order (k)< r) and C of order (r X m). Of course,

ifwe define, for instance, BC _A D,thenwe also have: Tr(AD) = Tr(DA).

Using the properties and rules stated by Eqs. (D.2) through (D.8), the validity

of the introduced simplificationof the algorithmic formulas for the Dii and Diik

dynamic coefficientsfor any manipulator can be proved through the following

steps:
!

1. Rearrangement of the chain product of the 4 by 4 matrices under

the Trace operator so that the Rik matrix product group will be

i _ isolated. (Itis noted that for R iki = I and k = j - I, j being the
' ! lowest index number for a derivative matrix which appears in the

; general for_nula. )
_ 2. Then, the matrices under the Trace operator are arranged in a

|

} form Tr(PM) where M is a chain product of matrices containing• " |. also the Rik matrix.
l, ," • |

]
3. Finally, the elements of the M matrix are determined by direct

multiplication in a partitioned form similar to the partitioning

introduced in Eqs. (D. 2) through (D. 6) for the Rik, B ik, P, Q,

and _ matrices. This last step then reveals that the four sul_-
matrices of M

II i_ml2
I

Lm2| ! m22

will only contain the submstrix r| l' that is, the r| 2 and r22
submatrices of R ik will not appear in the four submatrices of

M. Since the remaining r I 1 submatrtx is the identity matrix,

it (or equivalently, the Rik matrix) can be omitted from the

M matrix. That proves the validity of the atlSorithmic simplifi-

cations for Dij Jmd Dij k stated in this Appendix. I
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The three major steps of proof for the algorithmic simplification of the D..
lj

and Diik dynamic coefficients are compiled in the subsequent pages for

different combinations of rotary and linear joints. The derived formulas

reveal the nature of the introduced algorithmic simplifications in detail and

immediately show some interesting structural and symmetry relations for the

different dynamic coefficients.

A. Acceleration-Related.Dynamic Coefficients
t

1. Diagonal Coefficients, D..
t 11

a. Rotary joints.

The general component of D.. takes the folio,ring form after rearrangement: t

II

i , TrlRQBPBTQ T) - Tr(pBTQTRQB) ,

.. Direct multiplication results

i,..":'_" .T T ° T T

Ollqllrllqllbll i bllqllrl lqllbl2
!

M = ,4........... (D. 9)
I

T T , T T

bl2qllrllqllbll I bl2qllrl lqllbl2

" "
Consequently,

TrlPBTQTRoB) _ TrlPBTQTQB) (D. 101

i I

tFor ¢lsrttY in writing, the super.cript, are omitted from the R and B
matrices.
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b) Linear joints.

Rearrangement yields for the general term:

Tr(RQBPBTQ T) = Tr(pBT_TRQB)

M

Direct multiplication results:
?

i , ]

' M = ' - = ' (D. 11)

_ * I 1
' qlZrll,ql2 i

omit

C_nsequently,

TrCpBTQTRQB} _ Tr(pBTQT_B)= Tr(PM)= P22 {D. 12)

!_ where P22 is simply the mass of a link.

-/:,_:- 2. Off-Diagonal Coefficients D..

a) Two rotary joints.

Rearrangement yields for the seneral term..

Tr(RQBpQTB T) = Tr(I:_TBTRQB)

M

JPI,, Technie_ Memorwtdum 33-669 D-7
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a

Direct multiplication results:

°mit T_ b
"T T J, I

qllbllrllqllt)ll It qll llrllqllblz

M = .......... I .......... (D. 13)
I

I
0 I 0

Cons equ--ntly,

Tr(I:_TBTRQB) <=_ Tr(pQTBTQB) (D. 14)

i The symmetry Dij = Dji is easily seen since

Tr(I:_TBTQB) = Tr(pBTQTBQ)

: :, b) One linear and one rotary joint.

Rearrangement yields for the general term:

,_ TrlR_BI_TB T) TrlI_TBTR_B)

Direct multiplication results:

omit
l

; T T rll _,_ 0 '0 J qllbll s-I ! m12
J

M • " "' ........ = " " I" " " " (D.I$)
s l

o ', o o , o

mm i m i

c
L
I
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Consequently,

l.
Tr(pQT BTR_B) ¢_ Tr(pQTBT_B) T= PI2 mIZ (D. 16)

i

T i

Since Pl2 m12 is a scalar, the symmetry Dij = Dji in this case is obvious, i_

c) Two linear joints.
i'

Rearrangement yields for the general term:

Tr(R_Bp_TB T) = Tr(pQTBTR_B)

' M

: Direct multiplication results:
i '
J • ,

- I 0 O' 0

t • ; $ I
, lw = - ....... = - r - - - "_'.,u.17)

-, " --T T --

- . I mzz

.:.:;,,.:'.::." omit

Consequently,

Trlp_TBTRQB) <_ Trlp_TBTQB) = P22 mzz (D. 181 ,

Since P_Z mz2 is a scalar, the symmetry D_j = Dji in this case is also

obvious, ii;:
I
I,
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B. Velocity-Related Dynamic Coefficients

1. Centripetal terms

a) Rotary joints.

aa) Di, kk' i < k: Centripetal effect of the outer joints felt at the inner
rotary joints.

Rearrangement yields for the general term:

{ Tr(RBQQpBTQT) = Tr(pBTQTRBQQ)

•

• i_ M

, ! Direct multiplication results:
: omit

' / --T T J 0
i bllqllr bllqllqll j

_ _._: M = .............. , (D. 19)

• r 1 q t 0blzqll lbllqll 11 i

:, o it

Consequently,

Tr(pBTQTRBQQ) _ Tr(pBTQTBQQ) (D.Z0)

bb) Di, kk' i > k: Centripetal effect of the inner joints felt at the outer
rotary joints.

Rearrangement yields for the general term:

Tr(RQQBpQTB T) = Tr(pQTBTRQQB)

M

• _ *_: D-I0 JPL Technical Memorandum 33-669
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!

i

Direct multiplication results: !

omit omit i

- 1 ,, / ] _

T T T T /
qllbllrllqllqllbll qllbllrllqllqllbl2

M = ........... i ............ (D. 2,1) !
, i
' 0 |0 ,

Consequently, )'

t°

¢
Tr(pQTBTRQQB) ¢_ Tr(pQTBTQQB) (D. ZZ)

i

b) Linear-rotary _oint pairs.

i i aa) Di, kk' i < k: Centripetal effect of the outer rotary joints felt at the _

I inner linear joints. :_Rearrangement yields for the general term:
'

, |
i r

i,:> .: TrlRBQQpBTQ T) = Tr(pBT_TRBQQ)

M

• Direct multiplication results:

0 I o
I

M = _ ......... t . = (D. 231
I

-5i,. , o
Ibllqllqll I .

omit

Consequently,

Tr(pBT_TRBQQ) _ Tr(I:_TBQQ) (D. Z4)
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J

bb) Di, kk' i > k: Centripetal effect of the inner rotary joints felt at the _ i!
outer linear joints.

l
Rearrangement yields for the general term:

Tr(RQQBPQTB T) = Tr(pQTBTRQQB)

M [

Direct multiplication results:

- I -
0 , 0

I
I

M = ............ ,........... - (D. ZS)

--T T ' --T T

ql2bllillqllqllbll ' qlzbllillqllqllblz
I

: omit omit
Consequently,

:/i" Tr(pQTBTRQQB) ¢_ Tr(pQTBTQQB) (D. Z6)
b

_: :, _ c) Remarks.

•" }

, ':i.' , 1 aa) D. = 0 is physically obvious. But it can easily be seen also from the :
•,ii ; ._

matrices as follows.

Rearrangement yields for the general term: I

TrlRQopQT) = Tr(pQTRQQ) I

C _5

Direct multiplication results. _-,
omit __:_

T / : 0 I O

qllrllqllqll i" I

M= ........ O ' ; = .a.;l =Q! I
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.t

C on s eque ntly,

Tr(PM} = Tr(PQ) =-0

since P is a symmetric matrix and Q is a skew-symmetric matrix.

(The Trace of the product of a symmetric and a skew-symmetric

matrix is identicallyzero. )

!

' _ bb] The close relationship between Eqs. (D. ZZ) and (D. 14) - that is between

Dij. for two rotary joints and D.1, kk for i > k rotary joints - is noteworthy.
For these two types of dynamical coefficients the final expressions

become:

i for Dij T T T T. T": Tr(Pllqllbllqllbll) + PlzqllDllqllbl2

i. T T T T T
i _ for D.x,kk: Tr(Pllqllbllqllqllbll ) + PlZqll°llqllql' I b12 i

i
| 2. Coriolis terms

The Coriolis terms are characterized by three indices separated into two

groups: i, kj with k_ j but i can be equal tok or j. (k andj are interchange-

able.) The values of i, kj allow several combinations, i < k, j with k < j;

k< i, j withi< j; k < i, j withi •j; i = kwithi< j; i = kwithi >j. Further, * :

both linear and rotary joints can be associated with the three i, kj indices. :_

Thus, the index values together with the associated joint types r_sult in a num-

ber of cases to be considered.

- /

a) Di, kj' ick, j andk- j :: =

1) Three rotary joints (e. g., DZ, 46) |_:_.,_:_;::_:_::_

Rearrangement of the general term yields: !_:_;_ :_

Tr(PB*BTQTRBQB*Q) ?

M
i J | i

_Here and in the s'ubsequent pages, the B and B* matrices have identical struc-
tare as specified by Eq. (D.3), but their elements (that is, their omitted upper
indices) are different.

JPL Technical Memorandum 33-667 D-IS

1974008732-143



Direct multiplication results:

omit

- ,T T T I • .,. [

i b q l_Y{'lql_ t 0bll bllqllrl ii I I

M = ...................... r - - (D. 27)

(b,T T T T T ) , I 0

_ Igbllqll +blzqll illbllqllb'_lqll ,, _
emit

: C ons equently,

_' ' Tr(PB*TBTQTRBQB*Q) _ Tr(PB*TBTQTBQB*Q) (D. 2_8)

i ; Z) One linear and two rotary joints.

s aa) i is linear, k and j are rotary joints. (e. g., D3, 45 )i
i -' I Rearrangement of the general term yields:

(";. I TrlPB*TBTQTRBQB*Q) i

::" M

Direct multiplication re sult s:

m

0 I 0
!

I
M = ............ r - - (D. Z9)

--T , t

qlz_ibl lqllbllqll I 0

_ I

omit

C
onsequently, _""

TrlI'_,*TBT_TRBQB*Q) _ Trlp_TBQB*Q) 1D.301
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i
i

bb) i and k rotary joints, j linear joint.

Rearrangement yields for the general term: :1

T r(PB _:;T B TQ T R BQ B*Q-- )

M

Direct multiplication results:

omit

- l -
0 I h,T, T T * --

-11 °l lql lrl lbl lql lbl lq12

I ............. (D. 31)M= -_ .........

, I .,T T T T T b* "q0 I + b ql, _ i (blgbllqll bl2qll) _II II I II la

- _mit "o

C equentlyi ons _

, j,

i Tr(PB_TBTQTRBQB_) -- Tr(PB*TBToTBQB_O ) (D.3Z)

i cc) i and j rotary joints, k linear joint. (e.g., D2, 34 )

:. The general term is:

[_, , zero
_,,._:" pB,TBT TRB _ -
•,:,_ _ Tr( Q B'Q)- 0

_g_, since_B* = _and_Q = 0.

_'_i .... 3) One rotary and two linear jo_ints.

Only one combination can be different from zero:

_#__ k is rotary while i and j are linear joints.
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Rearrangement yields for the general term:

T r(PB* TBTQTRBQB_,=Q)

M

Direct multiplication re sults :
m

!
0 , 0

i

M = - - _- ........... (D.33)
!

--T #--

0 I' qlZillbllqllbllqlZ
: omit

Consequently,
i
i'
" Tr(PB*TBTQTRBQB*Q) ¢_ Tr(p(_TBQB*Q) (D. 34)
i
t
¢

! The other possible two linear and one rotary joint combinations yield

| identically zero Coriolis terms since both _BQ and _B(_ are zero

t '.... matrices.

• L ' "

[• b) Di, kj' k,_ i,j and i < j.

I) Three rotary joints (e.g., D4,26 )

Rearrangement yields for the general term:

Tr(pQTB*TBTQTRBQB*) _.

M
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t

Direct multiplicationresults: i
_omit

-T b,_TbT T r ' T ,T, T T i ,
qll ll llqll II llqll II . qllbllOllqllrllbllqllbIz

M = ................. '................ (D.35)
I

0 j 0 l,

Consequently,

Tr(pQTB*TBTQTRBQB_) _ Tr(I_TB*TBTQTBQB_) (D. 36)

Z) One linear and two rotary joints.

aa) i is linear, k and j are rotary joints (e. g., D3, Z4 )

Rearrangement of the general term yields:
|

_! TrlPQ_B*TBTQ TRB_B*)

Direct multiplication results:

omit

I T b.Tb T T
0 , qll 11 llqllrll llqlZ

I
M = ................. (D. 37)I !-,

0 I 0 i. r :_

Consequently, ,:;!_'

TrlI_TB*TBToTRB_B*) _ TrlpQTB*TBTQTB_) 1D.381 _ ;/_-:
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1

bb) i and k rotary joints, j linear joint, r
|

Rearrangement yields for the general term !,

1

' Tr(_TB,TBTQTRBQB,) li

Direct multiplication results: !

' 0 I 0
' I

, _,
M = ................ I ............... (D. 39)

I

, _ -T _,T.T T r b q b* I --T.,T.T T

qlZ_llDllqll.ll II II II qlZ°llOllqll II II I,
_ Cons equently,

I '
r Tr(I_TB*TBTQTRBQB*) _ Tr(I_TB*TBTQTBQB *) (D.40)

! "
cc) i and j rotary joints, k linear joint (e. g., D4, 35 )

,: _ The general term is now"

,'i" "_ TrlI:_TB,TBT TRBQB, [ TRBQB, 3-"'" ""'_-- ,,, _ ) = Tr P(_BB*Q) = 0
•:_,_' _

!_,_,: _ zero

since _BB* =_ and _ = 0

3) One rotary on two linear joints.

Again, only one combination can be different from zero. k is rotary

while i and j are linear joints.

Rearrangement yields for the general term.

Tr(I_TBeTBTQ TRB_B,}
-- III

M
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Direct multiplication results:

i
0 , 0

' Ii

M = - -* .............. (D.41)

* -T.,_T, T T rl -- J
0 ,, qlZDllOllqll ibllqlZ

omit

Consequently,r

_ TrlpQTB*TBTQTRBQB*) ¢=_ TrlpQTB*TBTQTB_) (D. 4Z)
P
t

! _ Again, "he otl-er possible two linear and one rotary joint combinations

i _ yield identicallyzero Coriolis terms since both QBQ and QBQ are
" _ zero matrices.

, c) D. k_ i, j andi _,j.
, '_, l, kj'

I) _Three rotary joints (e. g., D6, 21 )

_'"' _" Rearrangement yields for the general term;

Trll_TB*TBTRQBQB,)

M

Direct multiplication results. _omit

T b,T. T "

T b,TbT b__b , _ _ ,
qll II llrllqll llqll II ' qll ll°llrllqllbllqllbl2

I

M = ........... J ............... (D. 43)
I

0 ' 0
L °

JPL Tochni©al Memorandum 33-669 D- 19

I

1974008732-149



,

f

J
i

Consequently,
1

TrlpQTB*TBTRQBQB'_) _ Tr(I:_TB*TBTQBQB*) (D.44)

Z) One linear and two rotary joints.

aa) i is linear, k and j are rotary joints.

, Rearrangement yields for the general term:

Tr(I_TB,T BTROBOB,)

_ m f

' M

i ' Direct multipl_.cation results:

i -: 0 0

"l" "4 --T .,T.T r b b* --T b, TbT b "*

)i I _"'° I ql2°ll°ll llqll llqll II i ql2 ll llrllqll llqll°12J

Consequently,

Tr(I:_TB*TBTROBOB*) _ Tr(F_TB*TBTQBQB*) (D.46)

bb) t and k rotary joints, j linear joint. (e.g., D4Z3)

Resrrangement yields for the general term:
F

TrlpQTB_TBTROB_B*) _I_!

[i&
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Direct multiplication results:
omit

E '0 i0 o T ,T T , -- I
o qllbllbl] r lql]Dllql2

M = - -' .............. (D. 47)
I

0 s

Consequently,

' '- Tr(pQTB*TBTRQBQB *) _=_ Tr(pQTB*TBTQB_) (D. 48)

t

i cc) i and j rotary joints, k linear joint (e. g., D5, 34)
f

The general term is now

i _ Tr(I_TB*TBTRQBQB*) --- 0
_ _ zero

i since QB = Q and QQ = O.

i 3) One rotary and two linear joints.
._ Again, only one combination can be different from zero: k is rotary

while i and j are linear joints.

Rearrangement yields for the general term:

Trll_TB*TBTRQB_B,)

M

I_ rect multiplication results:

i 2-_"

M. - _,.... _- - - Co.49) _:_,_:_

0 , ql2Oll OllillqllOllql 2 *_-'_
omit
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Consequently,

Tr{p_TB*TBTRQBQB*) _=_ Tr{p_TB*TBTQBQ) {D. 50)

Remark

Recalling thatO T = - Q, and comparing Eq. (D. 36) to Eq. (D.44), Eq. (D. 38) to

Eq. (D.48}, Eq. (D.40)to Eq. (D.46), and Eq. (D.4Z)to Eq. (D. 50)it is

seen from the right hand side of the respective equivalence expressions that

! : Eq. {D. 36) = - Eq. (D. 44)

*- Eq. (D.38) = - Eq. {D.48)

Eq. (D.40) = - Eq. (D.46)

I Eq. (D. 4Z) = -Eq. (D. 50)

That is, we have in general:

Di,kj ffi - Dj,ki for k< i,j (D.51)

d) D... withi< j
1, lJ

I) Three rotary .ioints (e. g., D2, 24 )

Rearrangement yields for the general term:

TrlPBTQTRQBQ)

M ),

Direct multiplication results: _,,
omit :'

" " I:T'i .. - .... cv.sz) ..:.
LolZqllrllqllollqll : _ *:,:

t
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[

i'
Ii

Consequently,
i

Tr(pBTQTRQBQ) ¢:> Tr(pBTQTQBQ) (D. 53)

I
;

Z) One linear and two rotary joints (e.g., DZ, Z3 ) f_

The Coriolis term can onl,r be different from zero if j is the linear

joint.

: Rearrangement of the general term yields:

T r (P B TQ TRQ BQ)

! M

" * Direct multiplication results:t !

' omit
m

:" ' ,T T | I
I _ 0 t Dllqllrllqllbll_l 2_;_ ! •

_, - _ 1 M = ............... (D.54) : '

i

TrlPBTQTRQBQ) _ TrlPBTQTQB_) 1D.55)
e) D... withi >j

x, 1J I
I) Three rotary joints (e.g., D5,52)

Rearrangement of the general term yields:

Tr(I_TBTRQBQ)

M
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Direct multiplication results J

omit '_

qll TI 11 11 llqll : i
M = ............ '- - (D. 56) '

t

L 0 i 0i i

Consequently,

r Tr(pQTBTRQBQ) _ Tr(I=_TBTQBQ) = Tr [_TQ]= 0

K (D.57)

• "_ ! Since K is a symmetric matrix while Q is a skew-symmetr.:c .natrix, !

and the Trace of the product of asymmetric and skew-symmetric i

, matrix is identicalIy zero, :

f

/" • Z) One linear and two rotary _oints (e. g., D3, 32 )

I.__:I'',__ Due to th. assumption that i > j, j must be the rotary joint. ;
:., ,, (Otherwiee we would have _BQ E 0 automatically. ) i

t:S, "" : "_ Rearrangement of the gen£ :al term yields:

_:_ TrlI_TBTRQBQ)

M

Direct multiplication resulte:

B I

0 '
!

I

M = - -_- ..... (D. 58)!

' -T. T

O i' ql2Ollillqllbll'ql_.
omit
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Consequently, i

Tr(p6TBTIRQB_) <=> Tr(p_TBTQB_)= Tr [B_P(B6) T Q] _ 0 (D.59)
K _

since the Trace of the product of a symmetric matrix (K) and a i

skew-symmetric matrix (Q) is identically zero.

Thus, the Coriolis term D. .. with i > j is identically zero in all cases.
I, lJ

-i
|

i
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